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Abstract. Abstract interpretation-based static analysis infers proper-
ties from the source code of a program. When the goal is to check a tem-
poral speci�cation on the program, we need the analysis to be as precise
as possible to avoid false negatives. In previous work [9], we suggested a
method called �property checking driven analysis� to automatically use
the speci�cation to check during the analysis in order to re�ne it. How-
ever, this approach requires to abstract domains of lower closure opera-
tors, something which was not developed. In this paper, we describe some
abstractions on lower closure operators developed for a small analyzer
of temporal properties. We examine the need for weak relational ab-
stractions, and show that using our new approach can give more precise
results than using a traditional abstract interpretation-based analysis
with expensive abstract domains.

1 Introduction
The objective of static program analysis is to automatically infer run-time prop-
erties on programs at compile-time. Since the properties are often undecidable,
static program analysis uses approximations. The acceptable level of approx-
imation depends on the application of the static analyzer: for example, when
the goal is to remove unnecessary run-time checks [4], missing a few possible
optimizations is acceptable. However, when the goal is to prove some speci�-
cations about the program (e.g. the absence of run-time errors), the analysis
must be very precise (to avoid any false negative), and e�cient enough to check
large programs. To obtain this result, an approach is to design a special-purpose
static program analyzer adapted to a restricted class of programs and a restricted
class of speci�cations. This method was proposed and successfully applied in [1],
for the veri�cation of real-time embedded software. However, the analyzer so
designed handled only one speci�cation (the absence of run-time error).

It may be possible to extend the class of speci�cations (e.g. to a larger class
of temporal properties) if the speci�cation itself is used to re�ne the analysis. In
previous work [9], we proposed to use the speci�cation in a di�erent, �reverse�
analysis (e.g. if the abstract semantics is computed with a backward analysis,
the �reverse� analysis is a forward one) which computes a �guide� for the com-
putation of the abstract semantics. This approach, which we called �property



checking driven analysis�, uses domains of lower closure operators as the con-
crete description of the �guide� for the main analysis. Thus, implementing this
method requires to design e�cient and precise abstractions of such domains.

This paper extends [9] by showing how to construct such an abstract do-
main, and presents a prototype implementation. We show di�erent abstractions
of domains of lower closure operators, based on the structure of the underlying
domains. Since a non-relational domain appears insu�cient to keep the precision
of the analysis, we develop a weak relational domain for abstract environments,
which uses a notion of local dependence between variables related to the tempo-
ral speci�cation. Finally we present the results of the analyzer on a few examples,
and we discuss the merits of our approach compared with analyses using tradi-
tional abstract domains.

2 Concrete semantics
In this section, we introduce brie�y the language and the kind of temporal spec-
i�cations we intend to analyse.

2.1 Language and states
Since the inspiration for the analyzer is Cousot's Marktoberdorf generic ana-
lyzer [3], we analyse roughly the same language. It is a very simple imperative
language, with only integers and without functions. Integer values range from
min_int to max_int, and there is an arithmetic error Ω. We denote by I the
interval [min_int, max_int], and by IΩ the set I ∪ {Ω}.

The language uses arithmetic expression Aexp, boolean expression Bexp,
command Com and list of commands Seq. The syntax is de�ned as:

A ∈ Aexp ::= n | x | ? in [A1, A2] | un A | A1 bin A2

B ∈ Bexp ::= true | false | A1 = A2 | A1 < A2

| B1 and B2 | B1 or B2

C ∈ Com ::= skip | x := A | ifB thenS1 elseS2 fi
| whileB doS od

S ∈ Seq ::= C | C ; S

Here, n are integers, x ∈ V variables, un ∈ {+,−} unary operators and bin ∈
{+,−, ∗, /, mod} binary operators. The di�erence with the analyzer developed
in [3] is the non-deterministic operation ? in [A1, A2], which returns an inte-
ger between the value v1 of A1 and the value v2 of A2 if v1 ≤ v2, and Ω if
v1 > v2. This operation intends to model all non-deterministic aspects of the
program, e.g. user inputs, sensors or con�gurations. The exact meaning of each
non-deterministic operation (i.e. how it relates to the speci�cation) is determined
in the temporal speci�cation.

Hence, a state σ ∈ Σ is de�ned as a pair of a program point p (in a set of
program points Lab) and an environement in V→ IΩ :

Σ = Lab× (V→ IΩ)



2.2 Temporal speci�cation and semantics
To simplify the abstraction, we choose to analyse only simple speci�cations which
make the distinction between non-deterministic operations as �internal� and �ex-
ternal� non-determinism. These properties are expressed with µ-calculus formu-
las of the form (we identify atomic predicates and the states they represent):

I |= µ

ν
X.(A ∨ (B ∧ ♦X) ∨ (C ∧¤X))

with µ
ν ∈ {µ, ν}. We can note that this class of temporal speci�cation is stable

by negation (i.e., if φ belongs to this class, so does ¬φ).
Here, I are initial states, A �nal states, B states with �internal� non-determi-

nism (the result of non-deterministic operations there can be chosen in order to
satisfy the speci�cation), and C states with �external� non-determinism (the
speci�cation must be satis�ed for any result of the non-deterministic operations
there). States which are not in A ∨ B ∨ C are error states. For the sake of
simplicity we assume that B and C are disjoint. In�nite computations are taken
into account by the di�erence between µ and ν. This class of speci�cations
includes all the CTL operators, and some kind of game speci�cations as well.

In a framework using states, we use the predicate transformers pre (y ∈ preX
i� at least one successor of y is in X) and p̃re (y ∈ p̃reX i� all successors of y
are in X). Then the speci�cation is (with lgfp being either lfp or gfp):

I ⊆ lgfp X.(A ∪ (B ∩ preX) ∪ (C ∩ p̃reX)).

Since the class of speci�cations is stable by negation, we can choose to express
the negation of the speci�cation. Then it is expressed by the formula:

I ∩ lgfp X.(A ∪ (B ∩ preX) ∪ (C ∩ p̃reX)) = ∅ (1)

Then, the goal of the analyzer is to over-approximate S = I ∩ lgfp X.(A ∪
(B ∩ preX)∪ (C ∩ p̃reX)). If we get ∅, we prove the property. Otherwise, we get
initial states which may not satisfy the speci�cation.

2.3 Property checking driven analysis
The goal of our analyzer is to illustrate the technique of property checking driven
analysis developed in [9]. In this section we give a summary of this technique.
Starting from a concrete semantics S = I ∩ lgfp φ, this method shows how to
construct a lower closure operator1 ρ such that:

I ∩ lgfp (ρ ◦ φ) = I ∩ lgfp φ.

In this formula, ρ reduces the value obtained at each iteration of the �xpoint,
while ensuring that the �xpoint will be greater than or equal to S. Hence, ρ
focuses the �xpoint computation on parts useful for the computation of S.
1 Lower closure operators are monotonic, reductive and idempotent. Basic results on
lower closure operators are recalled in [9].



In practice, the �xpoints are transfered into the abstract domain using ab-
stract interpretation results, and an over-approximation ρ′ of ρ is used. When ρ′

is included in the abstract �xpoint computation, it leads to more precise (and
still sound) results for S. Thus, the lower closure operator �drives� the analysis
towards the veri�cation of the speci�cation. We can notice that this process does
not change the abstraction itself, which is de�ned in the �xpoint transfer: it is
not an abstraction re�nement, but an analysis re�nement.

Some notation is necessary to exhibit the formulas expressing ρ. The lattice
of lower closure operators on a domain D is written (lco (D) ,v). A lower closure
operator ρ is characterized by the set of its �xpoints ρ(D), which is an upper
Moore family : ρ(D) = M (ρ(D)) = {∪A | A ⊆ ρ(D)}. As usual, ρ will denote
either the operator or the set of its �xpoints ρ(D), depending on the context.

With φ = λX.(A∪(B∩preX)∪(C∩ p̃reX)), applying the results of [9] gives:

ρ0 = λX.X ∩ I
ρ = lfp η.(ρ0 t Fφ(η))

where Fφ is a complex function de�ned in [9].
Here, ρ is constructed iteratively from ρ0 (the �xpoints of which are the

subsets of I, i.e. all the possible values for S). Intuitively, at each iteration, Fφ

add as new �xpoints the minimum sets which can lead, by an application of φ,
to a superset of an existing �xpoint X of ρ. All the �xpoints of ρ will then form a
sub-lattice of ℘ (Σ) on which we can restrict the computation of lgfp φ, without
modifying the intersection of the �xpoint with I.

To create a minimum set Y leading to a superset of X, we �rst test if X is
included in A∪B ∪C. If this is not the case, then we cannot de�ne any Y since
φ(Σ) 6⊇ X. But if X ⊆ A ∪ B ∪ C, we construct a possible Y by choosing one
successor for each element of X \B, and all the successors of X \C. Then these
sets are added as new �xpoints.

As the approximation of ρ involves only looking for successors of states,
we can consider it as our �forward� analysis (it starts from I and goes forward)
which will �drive� the �backward� analysis lgfp φ. We show in [9] that this process
can be iterated (as the result of the backward analysis can be used to get more
precise guide) until a �xpoint is obtained. In practice, as was observed previously
in other abstract interpretation-based analyzers which use backward-forward
combination (e.g. in [2]), this �xpoint is reached after a few iterations.

3 Construction of the abstract domain

Of course, ρ is not computable, we use abstract interpretation to approximate it.
Hence, we need to �nd abstractions on the domain of lower closure operators2.
Identifying ρ by the set of its �xpoints, an over-approximation of ρ is simply a
superset of ρ.
2 Note that this abstraction is orthogonal to the abstraction of ℘ (Σ) used in the
computation of the abstract semantics.



Given a set of states X, we can see the application of ρ on X as the removal
of states in X. A state σ may be removed for two reasons:
� The �rst case is that σ /∈ ρ(Σ). Then, σ is not in any �xpoint of ρ, and σ is

totally useless for the computation of I ∩ lgfp ρ ◦ φ. This happens if σ never
appears in the computation of the �successors� of I.

� There are some �xpoints of ρ which contain σ, but none is included in X.
In this case, σ is removed because it is useless without other states. Such a
state may be removed at some point during the computation of lgfp ρ ◦ φ,
and reintroduced later in the computation along with other states such that
it is not removed. The construction of ρ presented in the previous section
guarantees that any �useful� state for the computation of I ∩ lgfp φ will
eventually appear in the computation of lgfp ρ ◦ φ.

This distinction gives a starting point for the development of approximations
for lower closures. The states appearing in our �rst case can be obtained through
an approximation of ρ(Σ). As it is a subset of Σ, we can do that with any existing
abstraction of Σ. To remove other states, we need some kind of dependence
relations between useful states. Hence, a main issue of this work is to express
the dependence (related to the temporal speci�cation) between states.

3.1 �Interval� abstraction
The �interval� abstraction is the only one described in [9]. From an abstraction
of P to P ] we derive an abstraction of lco (P ) where each lower closure ρ is
represented by two elements of P ]: an �upper� one which abstracts the greatest
�xpoint of ρ, and a �lower� one which gives a lower bound on the non-empty
�xpoints of ρ.

Formally, from a Galois connection P −→←−
α

γ
(P ],v]), we construct a new

Galois connection lco (P ) −→←−
α•

γ•

(P ],w])× (P ],v]) de�ned as:

α•(ρ) = (u]{α(Y ) | Y ∈ ρ \ {∅}}, α(ρ(Σ)))

γ•(l, u) = {X | l v] α(X) v] u}
With the functional view of lower closures, γ• becomes:

γ•(l, u) = λX.

{
X ∩ γ(u) if α(X) w] l
∅ otherwise

Hence the lower bound gives the relations between the elements of P . The
precision of these relations relies on the precision of the abstract intersection:
{X ∈ P | α(X) v] u]E} should be the smallest possible for a given E.

Example 1. Applying this construction directly on a whole existing abstraction
of ℘ (Σ) is di�cult and gives imprecise results (because the abstract intersection
is not precise enough). Rather, we use it on abstractions of basic elements, and
we use the result as a base for the construction of our abstract domain.



An example is given in [9] for integers, using the interval domain. We use the
same approach to abstract lco (℘ (I)): the initial abstract domain is (I×I,v), with
(a1, b1) v (a2, b2) ⇐⇒ (a2 ≤ a1) ∧ (b1 ≤ b2) (this is an extension of the interval
domain, as we do not restrict ai to be less than bi), and α(X) = min X, max X.

Then a lower closure ρ is abstracted by two intervals ((Mm,mM), (mm,MM))3,
such that:

∀X ⊆ I, ρ(X) ⊆
{∅ if min X > Mm or max X < mM

X ∩ [mm,MM] otherwise

3.2 Abstraction of lco (℘ (IΩ))

The abstraction of lco (℘ (IΩ)) can be deduced from an abstraction lco (℘ (I)),
using the fact that IΩ = I∪{Ω}. More generally, we study possible abstractions
of lco (℘ (A ∪B)) (with A and B disjoint) using lco (℘ (A)) and lco (℘ (B)). A
very simple abstraction is the non-relational abstraction:
Proposition 1. Let A, B be two sets with A∩B = ∅. Then lco (℘ (A ∪B)) −→←−

α

γ

lco (℘ (A))× lco (℘ (B)) de�ned as:
α(ρ) = (λX.ρ(X ∪B) ∩A), (λY.ρ(A ∪ Y ) ∩B)

γ(ρA, ρB) = (λZ.ρA(Z ∩A) ∪ ρB(Z ∩B))

is a Galois connection.
This abstraction is non-relational because it does not keep any constraints

between the two sets. Applied for our domain of values, it would abstract
lco (℘ (IΩ)) to lco (℘ (I)) × {ρ∅, ρΩ}, such that ρ∅ = λx.∅ means that no er-
ror appears in any �xpoint, whereas ρΩ = λx.x means that some �xpoints have
arithmetic errors.

However, it may be useful to know facts like �all non-empty �xpoints have
arithmetic errors� (in this case, we can stop the analysis), so we will use three
�possible error values� instead of two. To get this abstraction, we de�ne the set
T = {INI, ERR, TOP}, with the following intuitive meaning:
� INI means that no error is possible. The lower closure associated ρ satis�es

ρ(X) = ρ(X \ {Ω}) for all X ⊆ IΩ .
� ERR means that all elements of ρ, except ∅, contains Ω. Hence this is the

�error� case.
� TOP is the �do not know� answer.
Then we construct an abstraction α from lco (℘ (IΩ)) to lco (℘ (I))×T . Noting

α1(ρ), α2(ρ) the two components of the abstraction, we de�ne:
α1(ρ) = λX.ρ(X ∪ {Ω}) ∩ I

α2(ρ) =





INI if ∀X ⊆ IΩ , ρ(X) = ρ(X \ {Ω})
ERR if ρ 6= λX.∅ ∧ ∀X ⊆ I, ρ(X) = ∅
TOP otherwise

3 Which stands for ( (max min, min max), (min min, max max) ), as these are in fact
the bounds of the bounds of the non-empty �xpoints of ρ.



lco (℘ (I))× {INI} lco (℘ (I))× {ERR}

lco (℘ (I))× {TOP}
except ({∅}, TOP)

except ({∅}, INI)

({∅}, INI)

Fig. 1. Lattice lco (℘ (I))×T , divided in three parts, one for each value of T . Note that
({∅}, INI) is the global bottom, and that ({∅}, TOP) is collapsed with ({∅}, ERR).

Then lco (℘ (I)) × T can be de�ned as a lattice with the structure de�ned
Fig. 1, and α is the abstraction of a Galois connection.

Our abstract domain of values is then Iint×T . This loses the relation between
the Ω and the non-error values in a same set in ρ. However, we keep the option
�error everywhere�, which enables to know whether the error is not avoidable.

3.3 Abstract environment
To abstract an environment, we need to abstract lower closures on powerset of
Cartesian products. There is an intuitive non-relational abstraction (i.e. which
abstracts each variable separately), but we will see that it is not su�cient in
general, as it loses dependency information between source of non-determinism.
Hence we will describe a weak relational abstraction which expresses the depen-
dence between the possible values of several variables.

Proposition 2 (Non-relational abstraction). Let A,B be two sets, and πA :
℘ (A×B) → ℘ (A), πB : ℘ (A×B) → ℘ (B) the projections of subsets of A×B

on their components. Then lco (℘ (A×B)) −→←−
α

γ
lco (℘ (A))×lco (℘ (B)) de�ned

as:

α(ρ) = (λX.πA(ρ(X ×B))), (λY.πB(ρ(A× Y )))
γ(ρA, ρB) = (λZ.ρA(πA(Z))× ρB(πB(Z)))



is a Galois connection.
Hence, we can produce a non-relational abstraction of the whole environment,

but this abstraction is not su�cient. Let us look at the following program:
x := ? in [0,1] ;
y := ? in [0,1] ;
z := x + y

If we want to prove that, by choosing the value for x and y, we can satisfy z = 2
at the end of the program, we must know that x and y are independent before
computing z (e.g. we do not have x = 1− y). However, with a completely non-
relational abstraction, we know that x and y can satisfy x = 1 and y = 1, but
we do not know that these properties can be true simultaneously. The forward
analysis would give the same result if we replace the second line by y := 1− x.

This limitation makes the analysis much less useful. Thus, we need to keep a
kind of independence relation between variables, which is used to know that the
constraints expressed on each variable are e�ective simultaneously. We do this
by a weak relational abstraction, keeping only a relation between each variables.

Weak relational abstraction: two variables case First, we give a weak
abstraction of lco (℘ (IΩ))× lco (℘ (IΩ)) (like with two variables). Like the non-
relational abstraction, we keep an abstract value for each component, but we add
a boolean expressing the dependence between the components (true means that
the components may depend on each other). Saying that x and y are independent
in a lower closure ρ means that ρ is a Moore family generated by Cartesian
products of sets of values (i.e., all the �xpoints of ρ are union of the Cartesian
products generated by the �xpoints of the abstract values of each components).

Hence, the abstract domain is lco (℘ (IΩ))× lco (℘ (IΩ))×B. The concretiza-
tion of (ρx, ρy, false), expressed as a Moore family, is
ρ = M (X × Y | X ∈ ρx ∧ Y ∈ ρy): ρ is generated by Cartesian products. The
concretization of (ρx, ρy, true) is ρ = {Z ∈ ℘ (IΩ)×℘ (IΩ) | πx(Z) ∈ ρx∧πy(Z) ∈
ρy} with πx(Z) (resp. πy(Z)) the projection of Z to its �rst (resp. second) com-
ponent: this is the non-relational concretization of (ρx, ρy).
Example 2. To illustrate our abstraction, we restrict the values to S = {0, 1}.
We want to study an abstraction of lco (℘ (S × S)) to lco (℘ (S))×lco (℘ (S))×B,
or, more precisely, we want to describe the meaning of the abstract values. To
simplify, we suppose that the �rst component of the abstract value is {∅, {0, 1}},
and that the second satis�es ρ({0, 1}) = {0, 1}. Still, we have eight possible cases
(four values for the second lower closure, and two for the boolean), all described
in Fig. 2, with the order between them. When the boolean is false, the values
are independent, which means that all the generators of the lower closure are
Cartesian products, whereas when the boolean is true we can keep any generator.

The relation is very weak, and its meaning is restricted to the �lower� part
of the abstraction, but it is su�cient to keep the independence of the random
generators, which was our goal. In particular, the abstract functions will be easier
to compute than with stronger relations like octagons[10].



a

c e b

g

h

d f

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

a: {{0, 1}}, false
b: {{0, 1}}, true

c: {{0}, {0, 1}}, false
d: {{0}, {0, 1}}, true

e: {{1}, {0, 1}}, false
f: {{1}, {0, 1}}, true

g: {{0}, {1}}, false
h: {{0}, {1}}, true

Fig. 2. The eight cases of example 2. Each case is described by the value of the boolean,
and the generators of the second lower closure operator in the abstract value. For each
case, we give the generators of the concretized lower closure. We give also the order
between them. We can see that adding the independence boolean (case false) restrict
greatly the concrete lower closure.



Weak relational abstraction: general case Our �rst generic abstract do-
main is (V→ lco (℘ (IΩ)))× ℘ (℘ (V)), with the concretization:

γ(f, B) = {Z | ∀x ∈ V, πx(Z) ∈ f(x) ∧ ∀V /∈ B, πV (Z) = ×x∈V πx(Z)}
The principle is to associate a boolean to any subset V of V, describing the

idea that these variables are �globally� dependent. Note that three variables may
be �independent� when taken pairwise without being �globally� independent (a
set of points in dimension 3 may look like a Cartesian product when projected
in any direction, but not be itself a Cartesian product, cf. Fig 3 for an exam-
ple). Thus we cannot deduce exactly the �global� dependence function from the
dependence relations between pairs of variables.

However, keeping an element of ℘ (℘ (V))) is too costly and, in practice, it is
not useful4. Rather, we keep only a symmetric relation between variables (i.e. a
subset of ℘ (V× V)) expressing the dependence of the variables, but such that all
sets of variables completely unrelated must be globally independent (thus, this
is a subset of the real dependence relations between each couple of variables, but
from it we can reconstruct the whole set of dependencies). This construction can
be viewed as an abstraction (as we construct a sound, but not complete, �global�
dependence function), where the concretization function γV between ℘ (V× V)
and ℘ (℘ (V))) is:

γV(R) = {{vi}i∈∆ | ∃(i, j) ∈ ∆2, (vi, vj) ∈ R}.
Hence, the domain of abstract environments is (V → Iint × T ) × ℘ (V× V).

Due to this relational abstraction, we do not have a best abstraction function
α, but we still have the concretization function γ. Though we cannot use the
Galois connection framework, we can use the frameworks developed in [5].

3.4 Abstract domain
With the abstract domain constructed above, we can use the non-relational
abstraction developed for powerset of unions:

lco (℘ (Lab× (V→ IΩ))) −→←−
α

γ
Lab → lco (℘ (V→ IΩ))

This abstraction forgets information on conditionals and loops. This may be
a problem, for example, with the program:
x:= ? in [0,1] ;
if (x=0) then x:=0 else x:=1 ;

Before the test, there is only one non-empty �xpoint for x ({0, 1}), but after the
test, we get two �xpoints ({0}, {1}). Hence we lose information. In practice, we
think that it is possible to deal with this issue without modifying the abstract
domain, by a good implementation of the abstract test during the backward
analysis. Here, it means that we should be able to see that both branches of
the test are taken. Hence, if one branch can not satisfy the speci�cation, the
backward analysis must propagate that the speci�cation is not satis�ed.
4 It appears to be di�cult to infer the dependencies with this level of precision.



y
z

x

(0,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

Fig. 3. An example of a set of 3-dimensional points which gives Cartesian products
when projected in every direction, but is not a Cartesian product.

(1) Initial states: I
x:= ? in {0,1}(2) y:= ? in {0,1}(3) x:= x+y(4) Final states: F : x = 1

Result after a forward analysis. Result after a forward analysis
followed by a backward analysis.

Fig. 4. Example described in section 4.1: program and results.

4 Examples of analyses
We wrote a prototype analyzer in OCaml with a graphical interface, from Cousot's
Marktoberdorf generic analyzer [3]. The abstract domain for ℘ (Σ) is the domain
of intervals, and the abstract domain for lower closures is the domain de�ned in
the previous section. As a simple prototype, we did not try to optimize the ab-
stract operations. Thus, its complexity is exponential in the depth of the nested
loops, cubic in the number of variables and linear in the size of the program.

4.1 First example
We analyse the very small program presented, with its results, in Fig. 4.

The �rst random generator (for x) is �internal�, whereas the second (for y)
is �external�. The initial states are the non-error states of program point (1),



and the �nal states are the states of program point (4) satisfying x = 1. The
speci�cation is that it is not possible to reach the �nal state when only the value
of x is chosen5. Using the notations of the formula (1), it means that A = F , C
are the states at program point (2), and B are the other states.

For each program point and each variable, we give:

1. The error status (ini, err or top), corresponding to the values of T .
2. Four integers (mm,Mm, mM,MM) describing the possible values of the

variables. Informally, it means that for each generator, the variable has a
value in [mm,Mm] and in [mM,MM ]. We changed the order of the integers
(compared with section 3.1) so that this informal de�nition is more readable.

3. The list of variables which are dependent of this variable. Since the relation
of dependence is symmetric, we give it only once.

For example, in program point (3), with only the forward analysis, we get
x:[ ini: (0,1,0,1) ]; y:[ ini: (0,0,1,1) ], which means informally that
x is in {0, 1}, y is in {0, 1} and takes all values in {0, 1} whatever the value of
x (as they are independent). If the computations were exact, the generators of
the concrete lower closure operators would be {{(x : 0, y : 0), (x : 0, y : 1)}, {(x :
1, y : 0), (x : 1, y : 1)}}, which are exactly the concretization of the abstract
environment. Here we do not lose information.

In program point (4), the result means that x is in [0, 2] and takes at least
one value in [0, 1] and one value in [1, 2], y takes all the values of [0, 1], and the
two variables are dependent. Note that the real generators would be {{(x : 0, y :
0), (x : 1, y : 1)}, {(x : 1, y : 0), (x : 2, y : 1)}. We lose much information, but
thanks to the following backward analysis this is not a problem.

With a backward analysis following the forward analysis, we get x = 1 in
program point (4), and y takes all the values in [0, 1], which gives the elements
{(x : 1, y : 0), (x : 1, y : 1)}, Hence, in program point (3), it yields {(x : 1, y :
0), (x : 0, y : 1)} which is not possible given the fact that x and y must be
independent. Thus, the application of the lower closure operator gives BOT (which
represents ⊥), which proves our speci�cation.

4.2 Second example

The program we analyse is described in Fig. 5. Here again we have two random
operations. The �rst one (for the test) is internal, whereas the second (for n) is
external. We want to be sure that by controlling the test, we can prevent x = 0
after the loop. Hence, with the notation of the equation 1, A = F , C are the
states at program point (2), and B are the other states. The result of the analysis
is given Fig. 5. Since we get ⊥ for the initial point after the backward analysis,
the analyzer proved our speci�cation.

The di�cult point in this analysis is the backward computation at program
point (2). The analyzer detects that both branches of the analyzer are taken,
5 This example was given in [8] as a veri�cation which does not work with interval
analysis.



(0) Initial states: F : x = 1
(1) while (n>0) do {(2) if (? in [0,1]=0) then(3) x = x * (n-1);(4) else(5) x = x * n;(6) fi(7) n = n - (? in [0,1]);(8) }(9) Final states: F : x = 0

Result after a forward analysis. Result after a forward analysis
followed by a backward analysis.

Fig. 5. Example of section 4.2: program and results.

independently of the variables x and n, using the weak relational analysis. Thus,
it computes an intersection of the environments of program points (3) and (5).

5 Discussion
In this section we examine the improvement obtained by property-checking
driven analyses, with respect to the precision of the analysis.

Starting from the de�nition of S (as in equation (1)), the �rst idea to overap-
proximate S with abstract interpretation-based analyses is to choose an abstract
domain, develop in this abstract domain approximations for pre and p̃re, and
directly approximate the �xpoint using the �xpoint transfer theorem. A more
precise method, still easier than property-checking driven analysis, is to com-
bine the previous analysis with a reachability analysis starting from I, a method
proposed in [7]. This method gives a backward-forward analysis quite similar to
ours, but which does not use the lower closure framework. Thus, comparing the
two analyses is a good method to see what is gained with this framework.

The �rst thing we can see is that when the speci�cation does not use p̃re
(e.g. we just want to prove that some states are unreachable), our technique is
useless. Then the analysis is at worst as imprecise as a classical interval analysis
(though the complexity is worse).

To show that our analysis can be useful, let us examine a very small example:



I : y ∈]−∞, +∞[
x:= ? in [0,2];
y:= f(x,y) ;

A : y ∈ [0, 8]

Here, f(x,y) should be read as an arbitrary expression depending on x and
y, e.g. x+y or x∗y. We want y to be in [0, 8] at the end of the program, whatever
the result of the non-deterministic operator.

A �classical� analyzer will know that x is in [0, 2] when f(x, y) is computed.
In the backward analysis, it must be able to carry a relation between x and y,
su�cient to deduce the correct constraints on y when it analyses the command
x:= ? in [0,2]. The relation the analyzer can carry is closely related to the
abstract domain, and may not be suitable for the function f .

On the other hand, our analyzer can deduce precise constraints on y directly
during the backward analysis of y := f(x, y), knowing that x must take the
values 0 and 2. Hence it does not need to transmit complex relations.

Let us consider this example when f(x, y) = x ∗ y. Even with an expensive
abstract domain like polyhedra, we cannot express the good relation between
x and y, and the result of the analysis remain imprecise (i.e. it �nds that y is
in [−∞, +∞] at the beginning of the program).Whereas our analyzer �nds that
y must take values in [0, 4], which is the optimal solution. This example shows
that our approach can give better results than the traditional approach, even
with expensive abstract domains.

6 Conclusion and future work

We presented in this paper the construction of an abstract domain used in a
small prototype analyzer for automatic program veri�cation of temporal proper-
ties. This analyzer uses a technique based on lower closure operators to exploit
the information given by the speci�cation in the analysis. We showed how to
abstract the domain of lower closure operators, from the classical interval ab-
straction, to keep relational information about the states of the program. Even
with these weak abstractions, the method may give more precise results than
classical abstract analyses with expensive relational domains. Though we anal-
yse only a small class of speci�cations, the same method can be used for larger
classes by including temporal formulas in the concrete domain of the semantics
(as was done in [8]).

Our analyzer uses similar abstractions for both analyses (the direct one, on
sets of states, and the �reverse� one, on lower closures). Future work can stem
from the idea that these abstractions are, in fact, orthogonal. Thus, we can
use our abstractions on lower closures along with polyhedra on sets of states,
improving the precision of the analysis (without designing a complex abstraction
on lower closures based on polyhedra). In general, we believe that property-
checking driven analysis can be applied to other abstraction-related analyses.
Especially, it would be interesting to examine exactly how it can be compared



with abstraction re�nements and domain completions [6] and how we can use
both technique e�ciently.
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