Combining forward and backward analyses of
temporal properties

Damien Massé

LIX, Ecole Polytechnique, Palaiseau, France,
masse@lix.polytechnique.fr,
http://www.lix.polytechnique.fr/“masse/

Abstract. In this paper we extend the well-known combination of for-
ward and backward static analyses in abstract interpretation for the
verification of complex temporal properties for transition systems. First,
we show that this combination, whose results are often better than those
obtained by using both analyses separately, can be used to check simple
temporal properties with just one fixpoint. Then we extend this result
to more complex temporal properties, including a superset of CTL in the
case of non-game properties, and a superset of ATL in the case of game
properties.

1 Introduction

Abstract interpretation [4,7,9] is a formal method for inferring general properties
of a program. When the program is described as a transition system, two kinds of
analyses can be done: backward analysis and forward analysis. Forward analysis
simulates program computations, whereas backward analysis simulates reverse
computations. Both analyses can be combined to obtain much better results,
since each analysis may reduce the loss of precision introduced by the other
[4]. However, only restricted kinds of properties expressed in the p-calculus as
intersections of properties in the form of v X.(pAQX) and pX.(pV OX) are used,
including for user-provided assertions [2]'.

More complex temporal properties (such as CTL and ATL [1]) are commonly
checked in the model checking approach [3]. In that case, abstractions are com-
monly used to solve state explosion problems. Anyway, model-checking tools use
either backward or forward analyses [12], but usually do not combine them, since
one analysis is enough for finite concrete systems, and reversible temporal log-
ics [10] are not used for specifications (forward logics, that use only predecessor
operators, are used instead)?.

In this paper, we show that forward analysis can still be combined with back-
ward analysis in many model-checking temporal specifications. We will study

! In fact, the implemented tool [2] can be used to prove the negation of these properties,
not these properties.

% It is shown in [10] that state-based abstractions are not complete when checking
reversible temporal specifications.

non-game properties (a subset of p-calculus formulas), and game properties (a
subset of Ay formulas [1]). This combination can lead to better results, especially
when using widening and narrowing techniques [4] to deal with infinite abstract
lattices.

2 Standard combination of backward and forward
analysis

The combination of backward and forward analyses was originally introduced
in Cousot’s thesis [4] in order to approximate the intersection of backward and
forward transition system collecting semantics. It is widely known and used in
abstract interpretation, since it enables to combine information given by abstract
backward and forward operators, and thus to reduce the effects of the loss of
information due to the abstraction.

In this section we recall the results that justify the correctness of this com-
bination.

2.1 Combination of fixpoints

Lemma 1. Let P*(C°, 1°, T°, 1%, L") and P*(CH, Lt T 1f, %) be complete lat-
tices with a Galois connection P® % P! F" € P » P’ and B € P> - P’
be two monotonic functions, and let

L’ =gfp \Z.(Z " F*(Z) 1° B*(Z))

If Ft ¢ Pt — P! and B' € Pt — P! are monotonic and satisfy oo F” o y CF F*
and oo B® o v C* B, then the sequence (X,)nen defined by Xo = T, Xopy1 =
Xopn M F4(Xa,,), and Xonio = Xont1 N BY(Xony1),Yn > 0 is such that:

Vn Z 07 a(Lb) Eﬂ Xn+1 Eﬂ Xn

The optimality of this approach has been proved in [§8]: it has been shown
that L¥ = gfp AZ.(Z n* F*(Z) n* B%(Z)) is the greatest lower bound of the set
E* defined inductively as:

— Tﬁ (= Eﬁ
— If Z is in E* then so are F*(Z) and B*(Z).
— If Z; and Z, are in E* then so are Z; Mt Z, and Z; Ut Z,.

Therefore, L* is the best upper approximation of a(L") that can be obtained
using F* and B*.
2.2 Standard backward-forward combination

The standard backward-forward combination [4] derives from an application of
this lemma to the particular case of backward and forward collecting semantics:

F*, B®, F' and B" are instantiated as follows:

= AYlgfp, AX.(Y I f*(X))
= \YIgfp, AX.(Y I b (X))
F' = \Ylgfp, AX.(Y 1* f¥(X))
B* = \Ylgfp, AX.(Y 1* b*(X))

where 1gfp means either Ifp or gfp, and f°, b’ € P* — P, ft bt € P* — Pt are
monotonic. When oo f* oy C* f# and a o b” o v C¥ b¥, the conditions of Lemma
1 are satisfied [7].

Now, let P’ = p(X), X a set of states® J,and 7 € p(X x X) a transition
relation. As usual, we define pre, pre, post, post as:

post(X) ={s'|Is: (s,s') e T As € X}
post(X) ={s'|Vs: (s,s') €T =5 € X}
pre(X) ={s|3s' : (s,s'Y e T As' € X}
pre(X) ={s|Vs' :(s,s'Y e T = s € X}

Given Z,F C X, sets of initial and final states, f> = AX.(Z U post(X)) and
b = AX.(F U pre(X)) (and lgfp, = lgfp, = Ifp), we have [4]:

L’ = F"(T°)m° B (T") =1fp f Nlip v’ (1)

By computing y(L*)*, we obtain a good upper approximation of F”(X)N B"(X)
(at least equal to v(F*(T#) M# BH(TH))).

B(T") is the set of states satisfying the p-calculus formula pX.(F V ¢X),
where F' is satisfied by F. Therefore the method is used to analyze reachability
(rather unreachability, since we compute a superset of reachable states, or a
subset of unreachable states) properties. Equation (1) holds with the u-calculus
formula vX.(F A ¢X) too, and this result allows the analysis of termination
properties.

For other formulas (like uX.(F'VOX)), equation (1) does not hold in general:
a state may satisfy the backward property and be reachable from an initial state
which does not satisfy the backward property (an example is given in Figure 1).

In the next section, we will prove that under certain conditions we can still
use the combination for formulas with a single fixpoint.

3 Extension with a single fixpoint

As we want to deal with p-calculus formulas in this section, we assume that f* =
AX.(Z U post(X)) and that lgfp, = Ifp. Computing (or approximating) a/(L?) is
useless if we do not know L°. Equation (1) must hold in order to approximate
2So T =% 1"=0,m"=n,1" =u.

* We may over-approximate the greatest fixpoint with a narrowing [7].

Fig. 1. Example where L’ # F"(T") 0" B"(T®). Here, b’ = AX.(F U pre(X)) and
= AX.(ZU post(X)). L’ is then the set of states belonging to a trace of states which
satisfy the backward property.

the sets of descendant states of Z which satisfy B®(T). Anyway, if we want to
check a temporal formula, we just need to know the set of initial states which
satisfy B*(T"), that is ZNB”(T"). Thus the combination is useful if the equality:

INB(T)=InL’ (2)
is satisfied®.

Lemma 2. Assuming that f° = AX.(Z U post(X)), if L’ = F*(B*(X)), then
INB(X)=INnL.

Proof. As L’ = F*(B*(X)) = lfp AX.(B"(X) N (f*(X))), it is clear that L” C

B’(X). Moreover, the first iteration of the least fixpoint is B”(X) N f*(#), which

is equal to B”(X) NZ. So we have B*(X)NZ C L’, which proves the equality.
With B® = AY.lgfp, AX.(Y N b°(X)), we have the following lemma:

Lemma 3. IfV(X,Y) € p(X)*,Y CH(X) &Y C b (X Npost(Y)), then the
hypothesis of Lemma 2 holds. Thus, equation (2) holds.

Proof. We note that the hypothesis implies:

Y(X,Y) €p(8)°Y CH(X) &Y CP (XN Y)
% And this equality is satisfied when equation (1) holds.

We want to prove that L’ = F*(B”(X)). Left inclusion is the consequence of the
optimality of L’:

L’ =gfp \Z.(ZNF*(Z) N B*(Z))
CF(F(Z)NB (X)) NB (F(Z)NF" (X))
C F*(B"(%))

Thus, to prove the equality, we need to check that F”(B°(X)) is a fixpoint of
MZ(ZNF*(Z)NB°(Z)), that is, to prove that F’(B"(X)) C F’(F*(B"(X))) and
F*(B*(X)) C B*(F"(B"(X))). The former inequality is true because F” o F* =
F*. To prove the latter, we define 2 = F*(B*(X)) and ' = B*(F*(B*(X))).
We distinguish two cases:

— if 1gfp, = Up, let X,,, n > 0 be the (transfinite) iteration sequence starting
from () for b°. We will prove that 2N X,, C (2', for all n > 0. This is true if
n = 0, because Xo = (.
If n is a successor ordinal, and if the inequality holds for n — 1, we have
2N X, C b (X,_1). Using the hypothesis of the lemma, we obtain 2 N
X, CbW (X, 1Nf(2nNX,)). By monotony, f*(2NX,) C f(2). So, since
anl g Bb(z)

X, 1N (2nX,) C X1 NB(X)Nf(N)
(_: Xn—l nia
c o

Hence 2N X, is included in £2 N b°(£2'), which is equal to 2’ by definition
of (2.

When 7 is a limit ordinal (> may be not continuous), if 2N X, C 2’ for
all n' <mn, then 2N X, =20, ., Xn C 2.

By transfinite induction, 2N X,, C ' for all n. As the upper bound of (X,,)
is B*(X), which includes 2, we have 2 C £2'.

— if 1gfp, = gfp, let X,,, n > 0 be the (transfinite) iteration sequence starting
from X for AX.(2 Nb"). The limit of X, is 2'. X; = NN (X) = 2, since
2 C B°(X) C ’(X). Moreover, since B*(X) = bv*(B*(X)), 2 C v’(B*(X)),
so 2 C V¥ (B*(Z)N f°(2)). As B*(X)N f*(2) = 2, we have 2 C v*(12), and
Xy =. Thus X,, = 2 for allm > 1, and 2' = (2.

Application: With b* = AX.(A U (B N pre(X)) U (C N pre(X))).
If Y Cb(X), then, Vy € Y:

— if y € A, then y € (X N post(Y)).

— if y € BNpre(X), then 3z € X such that (y,z) € 7. Therefore, since y € Y,
z € post(Y), and y € BN pre(X U post(Y)).
Thus y € b°(X N post(Y)).

—ifyeCnpre(X),thenVe € ¥, (y,z) er=>r € X. Asy €Y, (y,z) e 7=
x € post(Y), soVz € X, (y,z) € 7 =z € X Npost(Y).
Thus y € C N pre(X U post(Y)), so y € b(X N post(Y)).

Therefore, Y C b”(X) = Y C b”(X Npost(Y')). The other side of the equivalence
is automatic. Thus the hypothesis of Lemma 3 is satisfied, and equation (2)
holds.

So we can use the backward-forward combination to enhance the verification
of properties in the form of: 6 X.(AV(BAOX)V(CALX)) with o € {u,v}. These
properties are interesting: they allow to distinguish between different kinds of
non-determinism (“controllable” and “uncontrollable” non-determinism). We are
not far from game properties, as we will see in section 5.

Unfortunately, the extension of this technique to the whole p-calculus does
not work: for example, a formula like uX.(F V $0X) leaves “holes” in traces,
preventing combination with forward analysis. However, it is possible, from this
result, to extend it to a temporal logic expressive at least as CTL.

4 Extension to a larger specification language

In this section, we try to apply the backward-forward combination to the verifi-
cation of some p-calculus formulas. If ¢ is a formula, we denote by [¢] the set
of states (in X) satisfying .

The formulas ¢ are defined by the grammar:

pu=p|ploi A2 |1V | Op|Op|aX.(o1V(p2a ANOX)V (p3 ATOX))

with o € {p,v}. It is worth noting that all these formulas are closed, and the
defined temporal logic includes CTL. Obviously, the logic does not change if we
replace 0. X.(p1 V (P2 AOX) V (w3 AOX)) with 0 X.(p1 A (02 VOX) A (psVIOX))
in the above grammar.

Our goal is to obtain a “good” upper approximation 2,(a(Z)) of a(Z N [¢]),
using backward-forward technique to enhance fixpoint computations. We assume
that for all proposition p, we have an upper approximation [p]* of a([p])® (and
an upper approximation [-p]* of a([-p])).

We need abstractions of pre, post and pre, and we will respectively denote
them by pret,post! and pre’. Moreover we will denote by post* and post** the
functions AX.Ifp AY.(X U post(Y)) and AX.Ifp AY.(X U* post#(Y)) respectively.
The following inequalities are assumed to be satisfied for all X C X

a o pre(X) C* pref o a(X)
a o pie(X) C* pre’ o a(X)
a o post(X) C* post? o a(X)
a o post*(X) C¥ post*? o a(X)

5 which may be a([p]), if it is computable.

To simplify notations we denote by Lngp(f,9), with i € {b,#i}, the expression:
gfp AZ.(Ifp AX.(Z N* £(X)) N lgfp AX.(Z NP g(X)))

Llfgfp(f, g) is the limit of the decreasing chain Z,, defined by Z, = Th, Zon+1 =
Z2n |—|h lfp }\X(Xgn I’lh f(X)) and Z2n+2 = Z2n+1 |_|h lgfp)\X.(X2n+1 |—|h g(X))
If ¢ is a formula, we can now define : (2, € P* — P* as follows:

[[p]]ﬁﬂﬁs
= w() 02 (S

2,(S)
(5))
Dp1vps (8) = 24, (5) UF 25,(8)
(5))
(5)
(S)

LP1/\902 S

i
5) = FieH(0 <p<postﬂ<)
204 (S (o (post*(5)))
(AX.(S L postt(X)),
AY.(2, (post™(S))
LEQ,, (post**(S)) Mt preﬁ(Y)
L 2y, (post**(S)) M pref ()))

25X (01 V(9270 X)V (93A00x)) (S

It is worth noting that even if we replace post**(S) by T* in the last line,
we still have to compute it as the first iteration that leads to Lfgfp. However,
this replacement may not change the final result of (2, and make the computa-
tion much faster (because the computation of £2,(T¥) can be simplified). The
following theorem is valid with or without the replacement:

Theorem 1. For any formula ¢, and T C X:
a(ZN [¢]) CF (Z) N 2, (a(T))

Proof. The proof is by induction on the structure of ¢. By monotony of «, it is
obvious that a(ZN[¢]) C* a(Z), so we need to prove that a(ZN[y]) C* 2, (a(Z)).

If ¢ = p, by monotony of a:
(TN [p]) EF «(Z) M a([p]) EF «(Z) 1 [p]* CF 2,((T))
If o =1 Ao

a(Znfe]) = aZN[pdNTNp:])
aZ N [er]) M a(Z N [ea])
C* 2y, (a(D)) 1 2y, ()
CF 2,((2))

If ¢ = 1 V 2, the calculus is quite the same, except that we use the fact that
« is additive [7].

If ¢ = Ogy, we have Z C pre(post(Z)), so:

a(Z N el) & ale(post(Z) N]
C* e (a(post(T) N [y
C* e (2,, (o o post(T)
C* it (2, (post* o (T
C* 0,(a(T))

)
D)
)
)

If p = Qp1, using the inequality Z N pre([e1]) C pre(post(Z) N [¢1]), we can do
the same calculus.
If o = 0 X.(p1 V (02 A OX) V (g3 AOX)), let’s define h’* = AX.([e1] U [e2] N
pre(X) U [ws] N pre(X)). Then [¢] = lgfp AX.h*(X).

We will use Lemma 1 with

f* = AX.(Z U post(X))

)N ([pa] U Tpa] N pre(X) U [ps] N pre(X)))
(T) N e:D)
'—Iﬁ (post™(Z) N [ip2]) NV e (X)
Fa(post™(Z) N [ps]) 1F pret (X))

It is clear that a o b” o v C! bf and a o f* o v C! f (given the standard
properties that «a is additive and « o v is a lower closure operator [7]). Thus we
have a(Liyg (f7,0%)) C# L} fp(fﬂ bt).

First, we prove that Z N L} fp(f",) = Z N [p]. We have:

*

(
(
X.(post™(Z
X(

Lo (f°,1°) Clglp AX.((fp AY.f*(Y)) N B (X)) C [¢]

Applying Lemma 3 with h°, we obtain Z N [p] = Z N ngfp(f", h?), s0 TN [y] =
TNlgfpAX.((pAY.f*(YV))Nh* (X)) = Iﬂlgfp/\X b(X). Then, applying Lemma 3
with b°, we obtain: Z N lgfp AX.b*(X) = I N ngfp(f7, %), proving the equality.
So we proved:
a(ZN [e]) = (T N Ligg, (£,1))
C* a(T) M a(Lig, (f°,07))
CF o(T) 7 Lig, (1%,19)

Now we need to check that:
1gfp(fji F) CF 2,(a(2))

By induction hypothesis, we see that 2,(a(Z)) = lgfp(£ b with b'* satisfying
b* C¥ 5", which complete the proof.

5 Extension to alternating-time temporal logic

Many properties on reactive systems are not easily expressible as p-calculus
formulas. This is true for game properties, which can be expressed as alternating
time p-calculus (Ap) formulas [1], or as formulas of weaker game logics ATL and
ATL*. In [13], basic abstract interpretation theory was applied on alternating
transition systems, with a model-checking approach of abstraction. As we did
with a subset of u-calculus, we will try to apply forward-backward techniques to
Ap.

5.1 Alternating transition system, operators

An alternating transition system [1] is a tuple (¥, Q, A, I, w), with X a set of
players, @ a set of states, A = {6; : Q — 22° | i € X} a set of transition
functions, IT a set of propositions, and 7 : IT — 2% a function which associates
each proposition to a set of states.

When the system is in state g, each player a must choose a set Q, € d,(q),
and the successor of the state ¢ must lie in [,c5, Qa (it is assumed that the
intersection is always a singleton, so the transition function is nonblocking and
“deterministic”). Thus, if we want an equivalent of the post operator used in the
non-game case, it would be:

Post(o) = |J () (@)

qEo a€eX

As before, we can define Post* (o) = lfp AX.(c U Post(X)).

The equivalent of the pre and pre operators are the controllable and uncon-
trollable predecessor relations, defined in [13]. In general case, with I C X\ {0},
they are defined as:

q € CPre;(0) iff 3(r; € 6i(q))iecr V(i € 6i(q))igr- (T Co
ieX

q € UPrer(o) iff V(7; € 6:(q))icr-3(mi € 0:(q))igr- ﬂ 7, Co
e

q € CPrey(o) means that, when the system is in state ¢, the team I can force
the successor state of g to be in o. If ¢ € UPres (o), it means in state g, the team
I cannot force the game outside o. Of course, if there is only one player, these
two operators are equivalent to pre and pre.

5.2 Alternating-time p-calculus

Ap formulas are generated by the grammar:

pu=plplzleiApz |1V [(I)Oer | IO ¢1 | (uz-i01) | (va.02)

Propositions p are in a set IT’, variables z are in a set X, and teams I are in
o).

Given an alternating transition system (X,Q, A, IT,w) such that IT' C IT
and ¥ = %', with £ : X — 29 a mapping from the variables to the set of states,
each formula ¢ defines a set of states [¢]e, computable as follows:

[rle = =(p)
[-ple = Q\7(p)
[z]e = £(2)
[o1 A p2]e = [e1le N g2]e
[o1 V@2l = [p1le U [p2]e
[K1) O ¢1]e = CPres([¢1]e)
[[71 O ¢1le = UPrer([er]e)
ﬂﬂm-@l]]g =lip AP'I[SOI]]E[sz]
[vz.e1]e = gfp Ap-[e1]efas)
If ¢ is closed, [¢]e does not depend on &, and we will write [¢] for [¢]e.

Given an set of initial states Z and a closed formula ¢, we will try to approximate
ZN[ep], or ifp AX.([e] N (Z U Post(X))), rather than Post™(Z) N [].

5.3 Abstraction of Alternating Transitions Systems

The application of abstract interpretation to alternating transitions systems is
already developed in [13], in a model-checking point of view. The definitions are
adapted to our notations as follows: the concrete lattice P is here g (Q), so
TP =Q,C"=C, L” =0, 1" =n, LU’ = U. P! is the abstract lattice, and there
is a Galois connection g (Q) % P'. We define now the abstract operators 7,
UPreg and CPreg.

For each p in IT', let 7*(p) be an element of P* such that m(p) C y(m*(p))7,
and 7*(p) an element of P* such that Q\m(p) C y(7*(p)).

For each subset I of X', we define the abstract controllable predecessor re-
lation CPre} € P! — P! and the abstract uncontrollable predecessor relation

UPreg € P* - P! These relations must satisfy, Vo C Q:
a o CPrer(o) C! CPret o a(o)
a o UPrer(o) C* UPreg o afo)

These operators are not those used in [13] for the abstract model checking
algorithm. The authors use under approximation of concrete relation to obtain
a sound abstract model checker. In this paper, we use upper approximation.

5.4 Combining forward and backward abstractions

We need an abstract successor operator for forward analysis. This abstract suc-
cessor relation Post* must satisfy:

a o Post(c) C* Post* o a(o)
" If a(n(p)) is computable, we can take 7 (p) = a(w(p))

Again, we define Post™* = AX 1fp AY.(X Lif Post!(Y)). One can easily check that:
a o Post*(c) C! Post™ o a(o)
We consider the closed Ap formulas ¢ generated by the grammar:

pu=plpleiVer [t Ap2 [(1) O w1 [[T]O ¢1
| 020V Vieps oy (@1 A O 2) V Ve sy (err AT'TO 2))

with o € {u,v}. As before, the last term of the grammar can be rewritten
exchanging V and A without modifying the expressivity of the logic.

As for the non-game case, we can now define, if ¢ is a formula, 2, € P* — P*
as follows:

2,(8) == (p) n* S
02-,(8) = =*(p) N* S
R np5(S) = 24, (S) T £24,(S)
Dp1vps (S) = 124, (S) LF 024, (5)
241y (S) = CPrel (2 (Postﬁ(S)))
“Q[[I]]Ow(s) UPTeI((Postﬁ(S)))

Qaw.wvv,(wm«r»omvvﬂ (o ALI'IO®)) (5) =
Lf ¢, (AX.(S UF Post* (X)),
AY.(2,(Post**(S5))
U A (02, (Post™(S)) Nt CPref(Y))
Ut (2,,, (Post**(S)) Nt UPre!(Y))))

Theorem 2. For all formula ¢ generated by the grammar above, and T C Q:
aZ N [e]) CF () 1 2,(a())

Proof. The proof is essentially the same of the non-game case.
All we need are the equalities Z N UCPrer([¢1]) C UCPrer(Post(Z N [e1]))
with UCPre = UPre or CPre, and the equivalence:

Y CH(X) < Y C (XN Post(Y))
with b* = AX.(AUU;(BrnCPrer(X))UlU;, (Cr:N UPrer (X))). These properties

are quite easy to check.

6 A simple example

We illustrate the combination with a very short and easy example. We will
analyze this small non-deterministic program:

0 {x=11}

(1)
while (n>0) do {
(2)
if (random in [0,1]=0) then
(3)
X = X * n;
(4)
else
(5)
x =x * (n-1);
(6)
fi
n
n =n - (input in [0,1]);
(8)
}
(9)

Here, x, n are integers, (random in [0,1]) returns a random integer in [0, 1],
and (input in [0,1]) returns a integer in [0,1] entered by the user (these
commands behave in the same way in the transition relation). Control point (0)
is the program entry, we differentiate it from control point (1), which is the while
loop entry.

With initial condition x=1 at control point (0), we will try to prove that the
user cannot be sure to have x=0 at control point (9), that is, the initial condition
satisfies vz.((—A) A (B V Qx) A (C' Vv Ox)) with A meaning that x=0 at control
point (9), C being the set of states at control point (2), and B being the set of
states at other control points.

As we use an upper approximation, we take the negation of the proposition,
that is (knowing that =B = C) : pz.(AV (B A OX) V (C AOX)). So we must
approximate lfp Az.([A] U ([B] N pre(x)) U ([C] N pre(x))).

We will use interval analysis [6], with the improvement of the results of local
decreasing iterations [11] for assignments in the backward analysis.

We must abstract post(X), pre(X) and pre(X). Abstract operators may be
described as systems of semantics equations [4, 5]. The program is almost deter-
ministic, and ﬁ%u is very close to pref. The differences appear at control points
(2) and (7), but we only need to express it at control point (2), with the equation:

P,=P MNP

(N being the intersection of abstract environments).

The following table gives the results with a single forward analysis (F*#(T*)),
a single backward analysis (B*(T*)), the intersection of both analyses (F*(T#)r#
B¥(T*)), and the first iteration of combination (B*(F*(T*))):

Lab. (var.)| FF(TF) | BE(TH) [FE(TH F BE(TH[BH(EH(TH)
0) x| [1] |[-00,+00] [1] 0
n:{[—o0, +00]|[— 00, +00 [—00, +0] 0
(1) X [07 +OO] —00, +00 [Oa +OO] [0]
n:{[—o0, +00]|[—00, +00 [—00, +00] [—00, +00]
(2) Xt [07 -|-OO] —00, +00 [07 +OO] [0]
n:| [1,+o00] |[—o0,+00 1,400 [1,+00]
(3) xz| [0,+00] |[—00,+00 0,400 [0]
n: [1,+OO] [—OO,+OO] [17+OO] [1,+OO]
(4) X: [Oa +OO] [_007 +OO] [07 +OO] [0]
n:| [1,4+00] [[—o0,+00 1,400 [1,+00]
(5) x:| [0,+00] |[—o0,400 0,+00 [0, +00]
n:| [1,4+00] [[—oo,+0o 1,400 [1, +o0]
(6) x:| [0,+00] |[—o0,400 0,400 [0]
n:| [1,+o00] |[—o0,+00 1,400 [1,+00]
(7) xz| [0,+00] |[—o0,+00 0,400 [0]
n: [1,400] [[—o0,4+00 1,400 [1,+00]
(8) x:| [0,+00] |[—00,+00 0,+00 [0]
n:| [0,4+00] |[—o0,+00] [0, 4+00] [0, 4+00]
(9) x:| [0,+00 [0] [0] [0]
n: [—OO,+OO] [—OO,+OO] [—OO,+OO] [—OO,+OO]

The next iteration of the combination will lead to @ everywhere, which is
of course the abstract fixpoint L!. So L’ = @ (which is not equal to F*(T?) N
B(T")). As, for this kind of temporal property, L’NZ = ZNB°(T"), we obtained
the expected result.

7 Conclusion

We have proved that the combination of forward and backward analyses still
holds to check complex temporal properties. Whereas this combination is useless
when dealing with finite domains, and not very useful when abstractions are
done by hand (as in the model-checking approach), we expect it will significantly
enhance results given by an automatic abstract analyzer of temporal properties.

Using the results of this article will require to have over-approximations of
the pre operator (or predecessor operators of game logic), something which has
not been not much studied until now. We also need a method to compute over-
approximations of greatest fixpoints since lower narrowing operators give poor
results.

Acknowledgements

I wish to thank the anonymous referees, as well as Radhia and Patrick Cousot,
Francesco Logozzo for their comments and suggestions.

References

1.

bad

10.

11.

12.

13.

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 100-109. IEEE Computer Society Press, 1997.

F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro-
ceedings of SIGPLAN ’938 Conference on Programming Language Design and Im-
plementation, pages 4655, 1993.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.
P. Cousot. Méthodes itératives de construction et d’approzimation de point fizes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése
és sciences mathématiques, University of Grenoble, March 1978.

P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303—-342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106—
130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238-252, Los Angeles, California, 1977. ACM
Press, New York, NY.

P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 82(1):43-57, 1979.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sizth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 269—282, San Antonio, Texas, 1979.
ACM Press, New York, NY.

P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 12-25, Boston, Mass., 2000. ACM Press, New
York, NY.

P. Granger. Improving the results of static analyses of programs by local decreasing
iterations. In R. K. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, 12th conference, New Dehli, India, volume 652 of
Lecture Notes in Computer Science, pages 68—79. Springer-Verlag, 1992.

T.A. Henzinger, O. Kupferman, and S. Qadeer. From prehistoric to postmodern
symbolic model checking. In A.J. Hu and M.Y. Vardi, editors, CAV 98: Computer-
aided Verification, volume 1427 of Lecture Notes in Computer Science, pages 195—
206. Springer-Verlag, 1998.

T.A. Henzinger, R. Majumdar, F.Y.C. Mang, and J.-F. Raskin. Abstract interpre-
tation of game properties. In J. Palsberg, editor, SAS 00: Static Analysis, volume
1824 of Lecture Notes in Computer Science, pages 220—-239. Springer-Verlag, 2000.

