Semantics for Abstract Interpretation-Based
Static Analyzes of Temporal Properties*

Damien Massé

LIX, Ecole Polytechnique, Palaiseau, France,
masse@lix.polytechnique.fr,
http://www.lix.polytechnique.fr/ masse/

Abstract. Analyzing programs with abstract interpretation often re-
quires to use a combination of forward and backward analyzes. However,
the forward analyzes are mostly reachability analyzes, which are often
not precise enough when we want to check other temporal properties.
In this paper we propose to combine transition systems with temporal
properties (with backward modalities) to get “extended” transition sys-
tems. We define forward and backward semantics for these systems, and
give indications for their combination. These semantics, which use set
of trees, can be abstracted to make more precise forward and backward
analyzes of programs. The combinations of these analyzes are expected
to give better results than the current abstract analyzes.

1 Introduction

Most program analyzes are either “forward” or “backward”. “Forward” analyzes
start with initial states and abstract traces from these states, simulating possi-
ble behaviors of the program. “Backward” analyzes start with final states and
simulate the reverse execution of the program. As sets of states (and even more
set of traces) are often infinite, and cannot be exactly represented, abstractions
are used to represent several states with one abstract state. Manipulation on
abstract states are done by “abstract functions”. Abstract interpretation [2,6] is
a very general framework to get abstractions and abstract functions and to prove
the correctness of an abstract analysis. Fully automatic abstractions to infinite
domains, with widening and narrowing [2, 5], may be the best solution when the
analysis must be without any human interaction.

Analyzes with these abstractions can give imprecise results, sometimes not
precise enough to prove the property we want to check (or its negation). In this
case, we can inject the result (sound but imprecise) in another analysis, improv-
ing the results the analysis would have given. We can do that with a forward
and a backward analysis, and repeat the process several times. This combina-
tion of analyzes (first described in [2]) gives sound and precise results. However,
most of the time, the forward analysis is a reachability analysis. This analysis is

* This work was supported in part by the RTD project IST-1999-20527 DAEDALUS
of the European IST FP5 program.

effective when the goal is to detect possible run-time errors (or potential termi-
nation). When the goal is to find initial states satisfying more complex temporal
properties, however, this reachability analysis is still usable [10], but the results
do not seem precise enough to really help the backward analysis. This problem
appears because the forward analysis is independent of the temporal property
being checked. In this paper we propose to use an extension of transition sys-
tems we call “extended transition systems”, to combine temporal properties and
transition systems. We define a forward semantics for these extended systems,
based on sets of trees instead of set of traces, which will be more precise and
give a precise concrete semantics for abstract interpretation. We define also a
backward semantics, and study combinations of backward and forward analyzes
in this new framework.

The first section of this paper will show a small example to explain the mo-
tivation of this work. In the second section, we will introduce notations and
properties on sets of free trees, which will be used afterward. Then we will define
what we call “extended transition systems”, and present forward and backward
maximal execution semantics for these systems. Then we will show methods to
produce an extended transition system from a program (represented as a tran-
sition system) and a temporal property. Finally, we will discuss on the combina-
tion of forward and backward analyzes by abstraction of the different concrete
semantics.

2 Motivations

We will start by the very simple program in imperative language presented in
Fig. 1.

(1) Initial state: I : = = y = uninit.
x:= input in {0,1}

2)
y:= random in {0,1}

®3)
x:= x+y

(4) Final states: F': z =1

Fig. 1. Simple program

input describes a non-deterministic function controllable by the user, random
a non-deterministic, incontrollable function.

We want to know if, from the initial state (program point (1), x and y unini-
tialized), the user can go to final states in F'. We can describe this property as
R # 0, with:

R = I NlpAX.(F U (55N pre(X)) U (I Npre(X)))

XY; being the set of states at program point (i). R is the set of the initial states
from which the user is able to reach a final state.

The combination of backward and forward analyzes, in the framework of
abstract interpretation, for this kind of temporal property was described in [10].
If S is the result of the analysis, then INS D R, so that INS # () is a necessary
condition for the property R # () to be satisfied. In particular, IN S = () implies
that R = (), so that in that case the property is unsatisfiable.

We will use interval analysis [4], which is quite imprecise but very fast (precise
relational analyzes like polyhedrons [8] are too expensive for large programs).

The result is given in the table (we start by a forward analysis) described in
Fig. 2.

Label| Forward |Combination
(1) x:|non-init.| non-init.
y:[non-init.| non-init.
(2) x:| [0,1] [0,1]
y:[non-init.| non-init.
(3) x:| [0,1] [0,1]
y: [0,1] [0, 1]
(4) x:| [0,2] (1]
y:i [0,1] [0, 1]

Fig. 2. Analysis of the program of Fig. 1. Each line describes the result for a program
point and a variable (as the analysis is non-relational). The column “Forward” gives
the results for the reachability analysis, which the column “Combination” give the
combination of these results with a backward analysis. This column is the fixpoint of
the analysis.

We get the combination after the first backward analysis, and the result is
too imprecise. We can get more informations in two distinct ways:

— We may give a relation between x and y at point (2), describing the in-
formation, given by backward analysis, that we must have 0 < z +y < 1.
This approach would lead to relational domains. In this particular case, oc-
tagons [13] would be sufficient, but more complex cases would need complex
relational analyzes. Thus we try another approach.

— It may be better if the information given by the forward analysis enables
to give @ already at program point (3) (with the backward analysis). As
the command y := random in {0,1} in the program does not use x, the
intuition would be not to modify x during the analysis of this command,
but during the analysis of x := y+x. To get this result, we must know that
on the point (2), y can take each value in {0,1} whatever the value of x,
and regardless of the choices of the user. On the contrary, the value of x
depends on the choices of the user. This distinction must appear in the
forward semantics.

The forward analysis derives from the trace semantics, which is the most
general semantics we can have from a transition relation and a set of initial
states. This semantics, which gives set of traces, does not include the context of
the execution of the program (here, the difference between input and random).
Our idea is to make several sets of traces, each set describing a “strategy” of the
“user” (with the same initial state). Each set of traces forms a tree, so we get a
set of trees. With the program used as an example, we get two trees (described
in Fig. 4), and none of those has all its leaves satisfying © = 1. Thus, there is no
way to force z = 1 in program point (4).

We can modify the program by swapping the random command and the input
command. The new program is given in Fig. 3. In this case, the choice of the
“user” takes place in two possible situations (z = 0 or z = 1 at program point
(2)). As it has two possibilities for this choice, we have four possible strategies.
Therefore, we get four trees (see Fig. 4 for detail), each tree expressing a strategy
by determining the choices the “user” would make in all situations. One of these
trees has all its leaves satisfying £ = 1, which shows that there is a winning
strategy for the “user”.

(1) Initial state: I : £ =y = non-init.
x:= random in {0,1}

2)
y:= input in {0,1}

®3)
x:= xty

(4) Final states: F': =1

Fig. 3. Modified program.

This example is a form of game. However, this approach is not specifically
related to games. The goal is to prove a temporal property, and each tree may be
seen as a potential “proof” of the property. The presence of a winning strategy
is merely the proof of the temporal property.

In the following sections, we develop this approach. We must begin by some
definitions and notations about trees (or, more accurately, about free trees).

3 Trees

Transition systems traditionally use sets of traces. In order to combine the tran-
sition relation with the temporal property being checked, we will use sets of free
trees. The set of sets of free trees will be the domain of the semantics of extended
transition systems. The following section gives some definitions and notations
about this domain.

Program points Program points

1 2 3 4 1 2 3 4
[u] [o] [ol| [o] x[u] [1] [1] [1]
u u 0 0 y|u u 0 0
x[u] [o] [o] [1] x[u] [1] [1] [2]
y|u u 1 1 y|lu u 1 1
Program of Fig. 1
[o] [o]] [1]
Ma] [ol/1° |9 x[u] [1]/1°] 9]
Le 2 N\Jol| [1] viul [2N\J1] [2]
1 1 1 1
Program of Fig. 3
0 0 0 0 0 0
AR 0 0 xlal/lu 0 0
Le NS 1] 1] [1] yIuNJ1] [1] [2]
u 0 0 u 1 1
[o] [o] [1] [o] [o] [1]
ol /] u 1 1 wlal/u 1 1
LeINJ 1] 1] [1] v u\[1] [1] [2]
u 0 0 u 1 1

Fig. 4. Traces generated by the programs of Fig. 1 and Fig. 3. Each state is described
by its program point (given by its column) and the value of = and y. The traces which
describe the same “strategy” for the user are put together in a tree for both program.

3.1 Free trees

We will note X the set of states, X* the set of finite sequences of elements of X,
2/ the set of infinite sequences, and X'°° the union of X* and X“. € denotes the
empty sequence.

We note < the prefix order on X*°. The dot . is the concatenation operator
between two sequences. It is extended to sets of sequences in the following way:

Yu € Z*VV C X u.V ={uwv]|v eV},
YU C 5*¥V C 5%, UV = {u.V |u€e U}.

In the following, o, ¢’ will always be states, and u, v will always be sequences,
possibly empty. For example, u.o will denote a (non-empty) finite sequence that
ends with o.

Definition 1 (Free tree). A free tree labeled by X' is a non-empty prefiz-closed
subset of X* with only one “root” (sequence of length one)!.

All the trees used in this article will be free trees. As we will never use the
empty sequence € of a free tree, we may omit it as well when describing a free
tree.

! This definition excludes the empty tree {e}.

t being a tree, we note £ the closure of ¢ in X°°, root(t) the “root” of ¢, and
branch(t) the set of maxima of . We will name the elements of branch(t) the
branches of t. A leaf of t is the last element of a finite branch of ¢. The set of
leaves of ¢ will be noted leaf (t).

We denote by T the set of free trees labeled by X', and © = p (7).

Definition 2 (Subtrees). Let ¢t be a tree, and u.0 € t, we define the subtree
of t rooted at u.o as:
Uu.o] = {ow | u.ow € t}.

Then t[,.] is a tree rooted by o. The set of subtrees of a tree ¢ is denoted
subtrees(t).

Definition 3 (Well-founded tree). A free tree t labeled by X is said to be
well-founded iff branch(t) C X*.

A well-founded tree does not have infinitely increasing chains of sequences.

A tree with finite arity is well-founded if and only if it is finite. However, in
this article we will deal mostly with infinite arity, and the distinction between
finite and well-founded must be made (an infinite but well-founded tree is pre-
sented in Fig. 5). We will note Ty r the set of well-founded trees labeled by
X.

Fig. 5. An infinite well-founded tree. ¥ = {i,0, | n > 0}, and ¢t = {iorok—-1...0u
0 <1 <k} The depth of the tree is unbounded, but it has no infinite branch.

In order to define some sets of trees by conditions on their infinite branches,
or on their well-founded subtrees, we introduce some notations:

Definition 4. — With 8 C Twr, we note Ty the set of trees t such that all
well-founded subtrees of t are in 6:

To={t €T | subtrees(t) N Twr C 6};

— With S C X%, we note T the set of trees t such that each infinite branch
of t has a suffiz in S:

TS={t€T | Yu€ branch(t) N X, Jv € S, u = v'.v}.

3.2 Orders on set of trees

C is an partial order on 7. However, this order is too imprecise: we will define
a “prefix” order <7 on trees (as in [9]), such that t <7 t' if ¢’ extends ¢ only on
leaves of t:

t=rt < tCt' A (Vu' € branch(t'),3u € branch(t),u < u').
We denote by C the preorder on @ defined as:
OC O < (Vtel,Iteh t=rt)

Note that @) is the only supremum in (6, C) (and, in general, § C §' = §' C 9).

As C is a preorder, it is not usable to define semantics as fixpoints of iterative
sequences. Rather than quotienting @, we will restrict ourselves to a subset
of © in which C will be a partial order. The subset used will be the sets of
non-comparable trees where all comparable branches of each tree are equal: the
branches of the trees are traces, and all traces must be equally complete in all the
trees where they appear. With this restriction (stronger than the quotienting),
we can define a least upper bound for increasing sequences of sets.

Proposition 1. We note:
Onc = {0 €O |V(t,t'") € 6%,Yu € branch(t),Vu' € branch(t'),u < u' = u =1u'}.
And, (6;)ien being an increasing chain of On¢, we define U(6;) as:

tGI_I(0,~)<=>E|(t0,t1,...)600x01 X ..,
to 7t 27 ..o At =U(L).

Then Onc(C, L,U) is a complete partial order (cpo) with L = {{c} | o €
X}

We will therefore be able to define semantics as limit of increasing chains for
C in On¢. In the next section, we define the extension of the transition systems
we want to study, and forward and backward semantics for this extension.

4 Extended transition system

4.1 Definitions

As a transition relation associates a set of successors to each state, an extended
transition relation will associate several sets of successors to each state.

Definition 5 (Extended transition relation and system). X being a set
of states, an extended transition relation T on X is a subset of ¥ x p(X), or
an element of ¥ — p(p(X)). An extended transition system is a pair (X, 1),
where T is an extended transition relation on X.

We will use the functional form for extended transition relations. We can
interpret an extended transition system in two ways: first as a program with two
players (the user and the machine), such that from a state o, the user choose
the set of potential next states in 7(o), and the machine arbitrarily takes one
state in the chosen set. The second approaches is related to logic: each set in
7(o) is an alternative way (expressed as a set of requirements) to prove o. In
this approach, 7(¢) = {#} means that ¢ is an axiom, whereas 7(¢) = () means
that o is false.

Each extended transition relation can be described as a set of “elementary”
trees of depth 1 or 2, in the following way:

Definition 6 (Elementary trees). 7 being an extended transition relation, we
denote by elem(r) the set of trees:

elem(r) = {{o, 0.0’ |0’ €S} |o € X, Se(o)}

elem(7) gives a graphical description of the extended transition relation 7
(see Fig. 6 for example).

1 1 2 2 3

A NNVAN

2 3 2 4 3 4

Fig. 6. The elementary trees of the extended transition system (X, 7) with ¥

{1,2,3,4} and 7(1) = {{2,3},{2,4}}, 7(2) = {{3},{4}}, 7(3) = {0}, 7(4) 0.

4.2 Forward semantics

From a set of trees, we make a forward step by appending elementary trees to
the leaves of the trees:

Definition 7 (Forward operator). The forward operator F' of an extended
transition system (X, 1) is:
F:0 - 06
06— {t |Fed,
A8u.0 € T(0) for all u.c € branch(t) s.t.
t' =tU{u.0.0' | u.o € branch(t),o’ € sy.s}}.

F(0) is created by appending (coherently) an elementary tree to each finite
branch of each tree of §. We can see that F' can also “remove” a tree when a leaf o
satisfies 7(o) = (0. F is, of course, a morphism for the union U. A simple forward
semantics of (X, 7) is therefore fp AX.(ZUF (X)), where Z = {{i} | i € I} is the
set of initial states described as trees:

Definition 8 (Partial forward semantics). The partial forward semantics
FP(I) of an extended transition system (X,) with initial states I C X is defined
as:

FP(I) =lfp5 AX.(ZU F(X))

where T = {{i} |i € I}.

With traces, this semantics gives the partial traces of the transition system
starting from the initial states.

A more expressive semantics would give only the maximal trees coherent with
the transition system. We can achieve this goal by using the order C on sets of
incomparable trees. We need a condition on 7:

Proposition 2. If an extended transition system (X, T) satisfies:
VoeX: Der(XY) = 7(o) = {0}, (1)
then F' defines a C-monotonic and extensive function from Onc to Onc.

This condition says that a potential final state is always final. Note that a
tree which has a leaf o with 7(o) = 0 will disappear in the next iteration of F.
This is compatible with the order C, which has () as a supremum.

Under these conditions, we can define a maximal forward semantics on an
extended transition system (lfp% F is the C-fixpoint of F' greater than or equal
to a):

Definition 9 (Maximal forward semantics). The mazimal forward seman-
tics F™(I) of an extended transition system (X, 7) with initial states I C X is
defined as:

Fm(I) = lfp5 F

with T = {{i} | i € I}.

An example of the maximal forward semantics is given in Fig. 7.

4.3 Backward semantics

There are two possible approaches for the backward semantics: a least fixpoint,
which gives only well-founded trees, or a greatest fixpoint, which gives all max-
imal trees. Both will be described here. The possibility of using both with a
bi-inductive definition, as we can do with traces, will be discussed afterward.

~_| A~ A~~~

2 3 2 3 2 3 2 3
1
1
A 3 4 3
2 4
Initial tree First iteration Second iteration Third iteration: fixpoint

Fig. 7. The iterations and the maximal forward semantics of the extended transition
system given in Fig. 6, with I = {1}.

Definition 10 (Backward operator). The backward operator B of an ex-
tended transition system (X, 7T) is:

B:0 - 0
0 — {teb | o=root(t)
3S € 7(0),3ts € 0 for all s € S with root(ts) = s,
t=o0{ts}}.

B(0) are the trees created by appending the trees of 6 to an elementary tree
of 7. B is monotonic and a complete N-morphism. However, B is not continuous.

To define the maximal trace semantics (as in [7]), we start from all final
states (states which have no successor). Here we will start with states o such
that 7(c) = {0} (on the contrary, states o such that 7(c) = () are more like error
states). Thus we note:

fr={oc€e X |7(0c) ={0}}

With traces, we define the maximal finite traces semantics (with a least
fixpoint), and a maximal traces semantics (finite or infinite) with a greatest
fixpoint. Here we define the maximal well-founded backward semantics, and the
maximal backward semantics.

Definition 11 (Maximal well-founded backward semantics). The mazi-
mal well-founded backward semantics is defined as:

m e = pS AX.(f, U B(X)).

Note that, as B is not continuous, the least fixpoint may be not reached after
w iterations. This may appear in the case of unbounded non-determinism.

The well-founded backward semantics can be defined as a greatest fixpoint,
starting only from the well-founded trees. In this case, the fixpoint is reached in
w iterations (as most).

Proposition 3.
Bivr = g, , AX.(f- U B(X)).

Definition 12 (Maximal backward semantics). The mazimal backward se-
mantics is defined as:

B™ = gfpS AX.(f, U B(X)).

The following theorem displays the links between backward and forward se-
mantics.

Theorem 1. We have, for all I C X, with T (I) being the set of trees rooted by
an element of I:

Byr 0 TI) = F™(I) N Twr;
B™ N T(I) = F™(I).

Cousot [3, 7] define the maximal traces semantics of a transition system as a
mix of a greatest and a least fixpoint (the greatest fixpoint being used for infinite
traces, and the least fixpoint being used for finite traces). This combination is
useful for further abstractions such as potential termination [3]. However, in the
case of sets of trees, infinite and finite traces are mixed, and it seems quite hard
to define the maximal backward semantics as a combination of a greatest and
a least fixpoint. However, we can compute first only well-founded trees with a
least fixpoint, and then use a greatest fixpoint on a restricted set of infinite trees
defined by the well-founded set previously computed:

Proposition 4. We have:
B™ = gfp%svm” MX.(fr U B(X)).
(we recall that Tpr. . is the set of trees which have all subtrees in By p).

Thus, to compute the maximal backward semantics, we first generate the
well-founded backward semantics as a least fixpoint, then create the set of all
trees with well-founded subtrees in the generated set, and then use a greatest
fixpoint.

5 Making extended transition system

Our idea is to create an extended transition system from a program and a tempo-
ral property we want to prove. A program is represented by a classical transition
system (X, 70). The transformation depends on the temporal property. In this
section, we present some examples.

5.1 Distinction between two non-determinisms

The temporal properties expressed here are quite easy, with only one fixpoint.
Using the p-calculus formalism, the temporal property is written

¢=aX.(AVBAOXVCADOX)

with a being either p or v.

This formula includes, of course, all the basic CTL operators (excepted AX
and EX). But we do not intend to combine them (with several fixpoints). How-
ever, the formulas express also some form of game properties, by introducing
“fated” and “free” non-determinisms, depending of the current state.

States satisfying A are “final” states. States satisfying B are “free” non-
deterministic states: we can choose the successor in order to get A (in other
words, if one successor satisfy @, then the state satisfy ®). States satisfying
C are “fated” non-deterministic states: we cannot choose the successor. States
which satisfy neither A, B nor C are errors states. For the sake of simplicity, we
identify A with the set of states satisfying A.

The extended transition system created (X, 7) is defined as follows, with
Y= 20:

7(o) = {0} ifoed
(o) ={{c'} | ¢’ € 70(0)} ifoeB
7(0) = {m0(0)} ifoeC

7 satisfies (1). Furthermore, the roots of the backward semantics with a least
fixpoint (resp. with a greatest fixpoint) of (X, 7) are exactly the set of states
satisfying @ with o = p (resp. with @ = v).

Theorem 2. An initial state satisfies & (with a = p) if and only it is the root
of a well-founded tree in F™(I).

An initial state satisfy (with a = v) if and only it is the root of a tree in
Fm(I).

52 CTL

A CTL formula has several nested fixpoints [1]. We may simulate the results of
these fixpoints with only one fixpoint by extending the set of states. Let us recall
the basic CTL operators (the negation is only used for atomic predicates):

¢p=p|-plo1Ve2|p1Ag2| AXp|EXe|AF¢ | EF¢
| AG¢ | EG¢ | A(¢1Ugs) | E(01U¢o) | A(¢1R¢2) | E(p1Re2).
& being a formula, we denote sub(®) the set of all sub-formulas in ¢. Then

we define X' as:
XY = X x sub(®).

The extended transition relation 7 is defined in Fig. 8. Let ¥ be the set of
subformulas of & of the form AG, EG, AR, ER. For all ¢ in ¥, we define
Ty = (o x {#})“, and Te = U ey Ty- Tw are the infinite sequences where the
temporal formula is constant and of the form G or R.. The only infinite branches
allowed for a tree “proving” ¢ must have a suffix in Ty.

Then an initial state ¢ satisfy @ if and only if (i,) is the root of a tree in
Fn(Ix@)NTTe,

7(0, A(p1 U2
(0, E(61 U2
(0, A(¢1R¢
7(0, E(¢1 R

= {{(0,92)},{(0,61), (¢', A(¢1U2)) | o' € 70(0)}}
(o, ¢2)}, {(0, 41),
= {{(0, 1), (0, 42)}, {
= {{(0, 1), (0, ¢2)}, {

o', E($1U¢2))} | o' € 1o(0)}
7,$2), (0", A($1R¢2)) | o' € 10(0)}}
$2), (o’ ,E(¢1R¢z))} | o' € 1o(0)}

7(o,p) = {0} if o satisfy p
7(o,p) = 0 otherwise
(o, 1V ¢2) = {{(0,¢1)}, {(0, $2)}}
(o, ¢1 A ¢2) = {{(0, ¢1), (0, ¢2)}}
(0, AX¢) = {{(¢',¢) | o' € T0(0)}}
7(0,EX¢) = {{(¢',9)} | o’ € 70(0)}
7(0, AF¢) = {{(0,9)},{(¢', AF9) | o' € 10(0)}}
7(0,EF¢) = {{(0,9)}, {(¢',EF¢)} | o’ € 10(0)}
7(0,AG¢) = {{(0,9), (o', AF¢) | o’ € 10(0)}}
(0, EG¢) = {{(0,), (¢', AF$)} | o' € 10(0)}
)
)
)
)

) (o’
) (
) (
) (o

Fig. 8. Definition of 7 for CTL.

6 Combination

One of the basic goal of using extended transition systems is to make auto-
matic abstractions, and to use the combination between forward and backward
analyzes. The principle of the combination is to use the result of the previous
analysis at each iteration of the new analysis, to get more precise values (which
are still sound). Even if the operation is done on the abstract domain, there are
underlying operations on the concrete domain. In this section, we examine the
possible combinations one can see in the concrete domain. As the approxima-
tions are over-approximations?, the operations must be made so that we still get

2 The combination of analyzes uses over-approximations to check intersection of prop-
erties (e.g. states which are initial states and satisfy the temporal property). To get
an equivalent of a lower approximation, we can use the negation of the temporal

property.

a superset of F™(I) (or F™(I) N Twr) at the end of the computation, in order
to keep sound results.

6.1 TUsing backward results in forward analysis

For each iteration of F', we can remove the trees which are not a subset of a tree
obtained in the backward analysis:

Theorem 3. With |: @ x @ — O defined as:
61 J,02 = {tl € b1 | dt, € 02,t1 C t2}
we have the following results:

F™(I) = fp= AX.(F(X) | B™)
F™(I) N Twr =iz AX.(F(X) | By r)

6.2 Using forward results in backward analysis

Each iteration of the backward analysis gives a set of trees. One possible improve-
ment is to intersect this set with a set of potential trees given by the forward
analysis. However, it would be much better to impose some kind of constraints
on the set of trees given by the iteration. The idea is to remove trees which will
not change the final results because they don’t appear together with other tree.
Formally, from F™(I), we would like to get H C © such that B’ defined as:

B'(0) ={te B(0) |3H € H,t € HAH C B(6)}

may replace B as the backward operator.
In order to get H, we need to distinguish the different cases of backward
semantics:

With a greatest fixpoint To get ¢ in B™, all sub-trees of ¢ must be in B™, at
each stage of the iteration. Therefore, we can take for H the sets of all sub-trees
of each tree in F™(I):

Theorem 4. With H = {subtrees(t) | t € F™(I)}, we have:

B™ = gfpS AX.(f, U B'(X)).

With a least fixpoint Let B be an iteration of AX.(f, UB(X)). Then t will be
in By if we can find a set 6 of subtrees of ¢ in B which “covers” all the branches
of t:

Vuet,Jvet, uXvVv =u, such that t,; €0 (2)

To see what may be 8 graphically, we just remove an “upper part” of ¢ without
removing a complete branch. We get a set of trees which satisfy the property (2)
(see Fig. 9 for an example). This result is expressed in the following theorem:

Theorem 5. We define a “slice” 8 of a tree t as a set of subtrees of t which
satisfies (2). We denote Slices(t) the set of all slices of a tree t. Then, with

H= U Slices(t)
te(Fm(HNTwr)
we have:

m e = lfpS AX.(f, U B'(X))

In practice, this theorem is not usable, H is too large, and its approxima-
tions would be too general. Finding a smaller suitable set is a part of future
developments.

Fig. 9. An example of a set of trees ({t1, t2,t3}) which satisfies (2) with respect to the
tree t.

7 Conclusion

We have defined new forward and backward concrete semantics for checking
temporal properties on programs: from the transition system and the temporal
property, we create an extended transition system which combines informations
from both, and we give the semantics of this extended transition system. The
forward semantics, more than the backward semantics, use a complex order on
set of trees, and complex operations. Deriving analyzes from these semantics
may be hard. However, our goal is not to prove properties directly from the
forward analyzes, but to collect more informations which will help the backward
analyzes.

Much work about approximations of sets of trees for abstract interpretation
was done by Mauborgne [11,12]. Even if this work deals with trees with finite
arity, it is expected to be very helpful to abstract structures on sets of trees.

Acknowledgments

I wish to thank the anonymous referees, as well as Radhia and Patrick Cousot,
Francesco Logozzo, Charles Hymans and Jean Goubault-Larrecq for their com-
ments and suggestions.

References

1.
2.

10.

11.

12.

13.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.
P. Cousot. Méthodes itératives de construction et d’approzimation de point fizes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése
és sciences mathématiques, University of Grenoble, March 1978.

P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1-2):47-103, 2002.
P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106—
130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238-252, Los Angeles, California, 1977. ACM
Press, New York, NY.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511-547, August 1992.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Conference Record of the Ninthteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 83-94, Albuquerque,
New Mexico, January 1992. ACM Press, New York, NY.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Conference Record of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 84-97, Tuc-
son, Arizona, 1978. ACM Press, New York, NY.

Panagiotis Manolios and Richard J. Trefler. Safety and liveness in branching time.
In Logic in Computer Science, pages 366—, 2001.

D. Massé. Combining backward and forward analyses of temporal properties. In O.
Danvy and A. Filinski, editors, Proceedings of the Second Symposium PADQO’2001,
Programs as Data Objects, volume 2053 of Lecture Notes in Computer Sciences,
pages 155-172, Arhus, Denmark, 21 — 23 May 2001. Springer-Verlag, Berlin, Ger-
many.

Laurent Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, Ecole Polytechnique, 1999.

Laurent Mauborgne. An incremental unique representation for regular trees.
Nordic Journal of Computing, 7(4):290-311, 2000.

A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310-319. IEEE CS Press, October 2001. http://www.di.ens.fr/ "mine/publi/article-
mine-padoll.pdf.

