Property Checking Driven Abstract
Interpretation-Based Static Analysis*

Damien Massé

LIX, Ecole Polytechnique, Palaiseau, France,
masse@lix.polytechnique.fr,
http://www.lix.polytechnique.fr/“masse/

Abstract. Concrete semantics used for abstract interpretation analyses
are generally expressed as fixpoints. Checking a property on this kind
of semantics can be done by intersecting the fixpoint with a specifica-
tion related to the property. In this paper, we show how to produce a
new, “reverse” analysis from this specification. The result of this analysis,
expressed as a lower closure operator, is then used to guide the initial
analysis. With this approach, we can refine the result given by the direct
abstract analysis. We show that this method enables to deduce forward
analyses from backward analyses (and vice-versa), and to combine them
iteratively in a way similar to the forward-backward combination of anal-
yses.

1 Introduction

The main idea of abstract interpretation [1-3] is to derive an abstract semantics
of a program from its concrete semantics. When the goal is to prove a property
(e.g. temporal property), the abstraction must be precise enough to express
this property. However, the computation of the abstract semantics often induces
losses of information, and gives only an approximation of the concrete semantics,
which may not be sufficient to prove the property.

Refining the abstract domain to a complete one, as presented by Ranzato and
al. [6], is a method to reduce the loss of information. But the refined abstract
domain may be not representable (or very complex), moreover this method is
not applicable when widenings [3] are required.

This paper exposes a different approach, based on the property we want to
check. In general, the fixpoint defining the concrete semantics is a description
of the “behaviors” of the program. This fixpoint computed (or approximated),
the property is checked by “intersecting” the result with the specification of the
property. From this operation, described as a lower closure operator, we construct
another lower closure operator which can be included in the concrete semantics.
The derived abstract semantics is then more precise than the initial abstract

* This work was supported in part by the RTD project IST-1999-20527 DAEDALUS
of the European IST FP5 program.

semantics. We prove that we can abstract this construction (which is then seen
as a new analysis) while preserving the correctness of the method.

To complete the approach, we show how the result of this new abstract
analysis can be used to refine the (approximated) lower closure operator, from
which we derive another abstract semantics, and so on.

This approach gives results which are similar to the combination of backward
and forward analysis used in abstract interpretation [1, 8], but we start from only
one analysis: the second analysis is derived from the first. As an example, we
show that, by applying this approach, we can obtain constructions similar to
previous such examples of combination.

This paper remains mainly theoretical. Though it is not very hard to imple-
ment analyzers based on this approach, getting the full advantage of it requires
efficient abstractions on the set of lower closure operators on a lattice (and
efficient abstract operators). We present in this paper a non-trivial class of ab-
stractions on this set as a starting point for such abstractions, but more work is
needed to make real analyzers.

2 Preliminaries

In order to present the new approach, we need to define some notations, and
recall some known results on lower closure operators.

2.1 Notations

Let Z be the set of integers, and Z* = Z U {—00, +o0}.
Let 7 be a transition relation on the set Y, we recall the four predicate
transformers in p (X) = p (X):

post(X)={o' € ¥ | Jo0 € X,(0,0') € 1}
post(X)={o' € £ | Vo € £,(0,0') €T =0 € X}
pre(Y)={oc € X | 3o’ €Y,(0,0') €1}
pre(Y)={oc € X | Vo' € X,(0,0') eT=0' €Y}

If (D, <) is a partially ordered set and a € D, the principal ideal generated
by a is denoted (1< a) = {b € D | a < b}. When there is no ambiguity, we will
note (1 a) instead of (t< a). We let D % D be the set of monotone operators
from D into D. N

¢ being a monotone operator on a complete lattice (D, <,V,A, L, T), we
denote by Ip ¢ (resp. gfp @) the least fixpoint (resp. the greatest fixpoint) of ¢.
lgfp ¢ will denote either Ifp ¢ or gfp ¢.

We recall that ¢ is continuous (resp. co-continuous) iff for all increasing (resp.
decreasing) chain A in D, ¢(\/ A) = \/,c4 ¢(a) (resp. ¢(A\ A) = A\, c4 9(a)).

When ¢ is extensive and a is an element of D, we denote by luis (¢,a) the
limit of the upper iteration sequence of ¢ starting by a.

2.2 (Lower) closure operators

Closure operators and Moore families are widely used in abstract interpretation
[1,3], to represent abstractions without the use of an abstract domain. Here,
we will use lower closure operators to “restrict” the functions of the analysis
independantly of the abstractions, which will be represented as upper closure
operators.

In this section, we recall the results on lower closure operators.

General results In the following section, (D, <,V,A, L, T) is a complete lat-
tice.

We recall that an operator p on D is a lower (resp. upper) closure operator
if it is monotone, idempotent and reductive (resp. extensive).

Proposition 1. The set lco (D) of lower closure operators on D is a complete
lattice (lco (D) ,C,U, M, Az.z, Ax. L), with:

pEp' < Vz €D, p(z)<p(z),
Llicapi =22 Vica pi(z),
MNicapi =AzlpAy.(z A N a pi(y))-

For upper closure operators, we will denote by (uco (D),C,U, M, A\z. T, A\z.x)
the complete lattice of upper closure operators on D.

Proposition 2 (Moore families). Any lower closure operator p is uniquely
determined by the set of its fizpoints p(D), which is an (upper) Moore family
(i.e. p(D) = M (p(D)) = {vX | X C p(D)}). The correspondence between
lco (D) and the set of upper Moore families in D is described by the following
equations:

pEp' < p(D)Cp'(D)
Liicari =M (UieA p(D))
HieA pi = ﬂz‘eA p(D)

We will use indifferently lower closure operators and upper Moore families.
When there is no ambiguity, we will denote p(D) by p itself (e.g. p C p/ <
p C p'). An example of upper Moore family is given Fig. (3a).

Proposition 3 (Soundness [3]). For all ¢ € D B3 D and p € lco (D), we
have:

popop<peod

p(fp ¢) > Ufp (p ¢)

p(gfp ¢) = gfp (p ° ¢).

Completeness Completeness (or exactness) is the inverse property of sound-
ness:

Definition 1 (Completeness [3]). p € lco (D) is said to be complete for a
monotone operator ¢ iff popop>pod (and so podop=po).

Whereas the soundness is always satisfied for all monotone operator ¢, com-
pleteness is always relative to an operator (or a set of operators). When we do
not state the operator, completeness will be for ¢.

The following proposition gives the relation between completeness and fiz-
point completeness.

Proposition 4 (Fixpoint completeness).

1. If p is complete, then p is gfp-complete (i.e. p(gip ¢) = gippo).
2. If p is complete and continuous, then p is lfp-complete (i.e. p(fpp) =1Upp o
).

For upper closures, it is well-known that completeness implies lfp-comple-
teness (called fizpoint completeness in [6]). This result was first presented by
Cousot and Cousot [3]. However, completeness (for upper closures) does not
imply gfp-completeness. By duality, for lower closure operators, completeness
ensures gfp-completeness but not 1fp-completeness.

Ezample 1. We choose D = p(Z) and ¢ = AX {0} U{z+ 1|z € X}. We know
that Ifp ¢ = [0, +oo[. Let p = {0, [0, +oo[}. Since p is an upper Moore family, p
defines a lower closure operator!, and one can check easily that p is complete for
¢. However, Ifp p o ¢ = (), and p is not Ifp-complete.

Construction of complete closures The construction of complete closure
operators was studied by Giacobazzi, Ranzato and Scozzari [6]. Here is the result
we will use in this paper:

Theorem 1 (Complete closures (dual of [6, Thm. 5.10])). Let po be a
lower closure operator on D. If ¢ is co-continuous, then:

R¢ =)\’I’] M(Ua€n min(¢_1 (T a)))

1
and R¢(p0) = lfp; An.(po U R¢(P0)) W

are well defined and Rg4(po) is the lowest complete lower closure operator greater
than po?.

1

[10, +infty[if X D [0, +inftyl,
p(X) = {(D otherwise.

2 R4(po) is called as the complete shell of po.

When ¢ is not co-continuous, this theorem does not hold because the min
operator does not satisfy V(a,z), = € $71(+ a) = (Jy € min(¢~1(1 a)),z > y).
However, with min’ : p (D) — p (D) satisfying:

— VX C D,min'(X) C X,
— VX C D,Va € X,3d' € min'(X) s.t. a' < a,

we can defined Ry and Ry as:

R¢ =)\’I’] M(Ua€n minl(d)_l(T a)))

2
and Ry(po) = Upc An.(po U Ry (po)) ®

Then Ry(po) is a complete lower closure operator greater than pg (though it
may not be minimal).

From this result, we can construct gfp-complete operators. To construct Ifp-
complete operator, we need a complete and continuous operator. We can achieve
this goal by using an extensive operator C on lco (D) such that C(lco (D)) in-
cludes only continuous operators.

Proposition 5. Let C be an extensive operator on lco (D) such that, for all
lower closure operator n, C(n) is <-continuous. Then C o Ry (with Ry defined
either by equation (1) or by equation (2) is an extensive operator, and luis(C o
R, po) is a continuous complete lower closure operator greater than po (thus, it
is lfp-continuous).

Example 2. We give here two simple examples for C.

1. As Aa.a is continuous, C' = \1j.(\a.a) satisfies the conditions of the proposi-
tion. This examples is worthless, but it proves the existence of at least one
possible operator.

2. When D = p(X), da.(an X) for X C ¥ is a continuous lower closure
operator. Therefore, C = An.(Aa.a N (n(X))) satisfies the conditions. This
example is interesting, as C' is an upper closure operator and all elements
of C(lco (D)) can be defined by a subset of X. Thus, we will be able to use
abstractions of g (X) to abstract lower closure operators.

3 Using lower closure operators

In the abstract interpretation framework, lower closure operators are seen as
lower approximations. However, this usage is hardly seen in practice®, and does
not present any additional theoretical interest, as a lower analysis is merely the
dual of an upper analysis.

Our approach does not intend to use lower approximations. On the contrary,
all abstractions will be upper abstractions. Lower closure operators are used to
“reduce” the “range” of the analysis, to restrict it to significant parts. In this
section we formalize this approach.

3 It seems that useful lower abstractions are harder to find than upper abstractions.

3.1 Concrete description

The first step of static analyses is the description of the concrete semantics of a
program. The semantics is often described as a fixpoint S = lgfp ¢ on a cpo D.
We suppose that D is a complete lattice, and, for simplicity, that D = p (X),
e.g. X is a set of states, traces, trees, etc.

Our main hypothesis is that the property we want to prove is expressed by
the inclusion of § in a subset P of X. This hypothesis may seem too strong, but
we can modify the concrete semantics in order to satisfy it.

Example 3. We can describe the program as a transition system 7, X' being the
set of states. I are the initial states of the program.

1. To express that the program will never reach error states E, we can write
either:
(fpAX.IT Upost(X)) C Z\E,

or
(UpAX.E Upre(X)) C Z\I.

2. To express that for all initial state, the program may not go wrong (with
the CTL formalism, Vi € I,i | EG(—error)), we can only use a backward
approach:

(fpAX.E Upre(X)) C I\I where E are the error states.

3. For complex CTL properties, with more than one fixpoint, we may need
to change the concrete domain in order to keep one general fixpoint for the
computation. The backward semantics expressed in [9] is an example.

Proving 8§ C P is equivalent to prove SN (X\P) = 0. This kind of property
may be checked in the framework of abstract interpretation: an upper approxi-
mation of SN Q (with @ = ¥\ P) is computed and compared with §.

The main idea of the approach is to consider pg = AX.X N Q as a lower
closure operator on p(X), and to exploit the results on the construction of
fixpoint complete lower closure operators. With the constructions described in
section 2.2, we can construct a lower closure p greater than pg which is lgfp-
complete for ¢. Then:

po (lgfpped) =poop(legfpg) =SNQ

The figure (1) is an illustration of this result.
Thus, instead of computing an over-approximation of lgfp ¢, we can compute
an over-approximation of lgfp p o ¢.

Ezample 4. With ¢ = AX.F U pre(X), we can use the equation (1) since ¢ is
co-continuous. With a C X'| we have:

min(¢~ (1 a)) = {post(a\F)}

)
e P
I po¢

> po = AX.XQ Q
L __ I fixpoints of p

,,,,, i fixpoints of pog

S'=lfppog
= p(lfp ¢)

Fig. 1. Description of the combination, without abstractions. We want to compute
QNlipgp = po(lfpp). We design p O po such that p is lfp-complete for ¢. Then
ONlfppogp=QNlipe.

For example, we can choose ¥ = {1,2,3,4,5}, Q = {1}, F = {5} and
™ ={(1,2),(1,3),(2,4),(3,5),(4,3),(4,2)}.

Then Ry(po) = M ({{1},{2,3},{4,5}}) (cf. Fig. 2). The derived analysis
Ifp (Rg(po)) o ¢ gives O at the first iteration. Therefore, the computation of
Rs(po) is a kind of “forward analysis” which carry informations to prove the
property we want to check.

3.2 Results with abstractions

The results given until now were on the concrete domain, without abstractions.
Of course, the lfp-complete lower closure operator is, in general, not computable.
However, the goal of our approach is to get a new, computable analysis. Thus
we need abstractions.

In this section, we introduce them, both in p (X) (to compute sound approx-
imations in the first analysis) and in lco (p (X)) (to compute sound approxima-
tions of the complete lower closure operators). We will show that the previous
results are still correct with these abstractions, thanks to the usage of lower
closure operators®. This will prove the correctness of our method.

4 Specifying the property with upper closures would require to use a lower abstraction
on the closure domain and on the initial concrete domain.

Fig. 2. Transition system described in example 4. {1}, {2,3} and {4,5} generates
Ry (po)

In the following propositions, Ry is defined with the equation (1) if ¢ is
co-continuous or with the equation (2) otherwise.
The case of a greatest fixpoint is easier, so we present it first.

Proposition 6 (gfp analysis). Let ¢ be a monotone operator on p(X), and
Q be a subset of X. We define pp = AX.X N Q. Let v € uco(p (X)) and T €
uco (leo (p (X)) be (upper) abstractions of o (X) and lco (p (X)), respectively.
Then, with:

p =1p X.T(po U Ry(n)),
we have QNgfpd C gfpv o po ¢.

For lfp analysis, we need to construct a continuous operator. We use the
method presented in proposition 5.

Proposition 7 (Ifp analysis). Let ¢ be a monotone operator on o (X), and Q
be a subset of X. We define po = AX. X N Q. Let C' be an extensive operator on
leo (p (X)) such that for alln, C(n) is continuous. Let v € uco (p (X)) and T €
uco (leo (p (X)) be (upper) abstractions of o (X) and leco (p (X)), respectively.
Then, with:

R =T o C(fp A\y'.T(n U Ry(n')))

p= lUZS(R, PO);

we have QNlfpgp Clfpropo .

It may seem that p would be long to compute, as there are two imbricated
fixpoints. In practical applications, however, it is probable that we do not need
to apply C' many times.

These theorems give a method to define a new, “reverse” analysis (since Ry
depends on ¢ ') which can be used to “guide” the first analysis, and thus to
enhance its result.

Expressing R4(n) is not so hard in practice. When 7 is generated by a set
A of subsets of X' (that is, n = M(A)), we need only to know that Ry4(n) is
generated by Uxeamin’ (¢~ (1 X)) (min’ being either min or min'). Therefore,
we do not need to keep a representation of the whole Moore family, just of a set
of generators.

Ezample 5. Starting from an abstraction v of p(X), we can use 7 = C =
A.(AX.X Nv o p(X)) (which can be represented as an element of »). Then
the result is the same for 1fp and gfp analysis. To examine the result of this
abstraction, we take v = Ax.x.

Then, for all n € T (lco (p (X)), n satisties n = M({{z} | z € n(X)}), so we
only have to express min'(¢ (1 {z})) to get Ry(n).

With X being a set of states and ¢ = AX.A N (F U pre(X)) (that is, 1gfp ¢
are the states which can go to F or, for the gfp, loop indefinitely in A), we can
use:

0 ifx ¢ A
min' (¢~ (1 {z})) = { {0} ifreF
{{y} | v € post({z})} otherwise
Then, with n = AX. X NY and pg = AX. X NQ,

T(po L R¢(77)) =\ X.XNnY'
with Y/ = QU post(Y N (A\F))

Thus p = AX. X N(fp AY.QUpost(Y N(A\F))). We got the reachability analysis
in A (with a slight modification due to F'). Using it before the backward analysis
is a well-known idea both in abstract interpretation and in model-checking [4].

With this abstraction, this is also the best result we can get with ¢ = AX.AN
(F'U pre(X)).

3.3 The combination

Until now, we just show how to construct a reverse analysis from an initial one,
and with this reverse analysis restrict the range of the first analysis. However,
the backward-forward combination used in abstract interpretation works in both
ways: the result of the first analysis is used to get a better reverse result, which
we can use in the first analysis, and so on.

Our approach is not symmetrical: the first analysis is on g (X)), whereas the
second one is on lco (p (X')). But we can still use the result of the initial analysis,
even restricted, in the reverse analysis. This property is given by the following
proposition for Ifp analysis (the same result holds for gfp analysis):

Proposition 8. Let ¢ be a monotone operator on o (X), and Q be a subset of X.
Let py be alfp-complete lower closure operator for ¢ such that QNlfp ¢ C lfp p; ©
¢, and T be a subset of X such that T D Up py o ¢. We define or € lco (p (X))
as or = AX.XNT.

Let C be an extensive and monotone operator on lco (p (X)) such that for all
n, C(n) is continuous.

Let v € uco(p (X)) and T € wuco(lco (p (X)) be (upper) abstractions of
p (X) and lco (p (X)), respectively. Then, with:

RT = An.Y o C(ifp Ay’ X (o7 1 (n U Ry(n"))))
pT = lfp An.(er M (po U RT (n))

then it exists pa € lco (p (D)) such that ps is lfp-complete for ¢, p© 1 ps and
ONlfpg Clfpps o ¢ (hence, QNIfpp Clfpv o pT o §).

With this proposition, we can construct a decreasing sequence (T),) of ele-
ments of p (X) greater than lfp N Q (along with a decreasing sequence of lower
closure operators (p!=), each p’» being greater than a lfp-complete closure op-
erator p,, which satisfies @ N1fp ¢ C lfp p, o ¢):

T(] =X
Tipr =lprople o ¢
To = Mpew Tk for all limit ordinal w

Ezample 6. We continue the example (5). We have:
pT = AX.X N (ifp \Y.T N (Q U post(Y N (4\F)))).

Then, in the sequence (T},), Tp+1 is constructed by doing a forward analysis
restricted to T3, then a backward analysis restricted to the result of the forward
analysis. This result is similar to the backward-forward combination used in
abstract interpretation [5], even if the goal is not the same.

Remark 1. This combination which uses lower closures may seem similar to
Granger’s local decreasing iterations [7]. However, in Granger’s iterations, lower
closures are constant and applied several times. Here lower closures are modified
at each iteration.

4 Abstractions of lco (p (X))

The examples we presented until now gives mainly already known results. To
find better results, we must develop efficient abstractions of Ico (p (X)). The
first approach is to find abstractions from existing abstractions of p (X). As an
upper Moore family is an element of p (p (X)), this work can be related to the
search of abstractions of p (p (X)). Following this principle, we will express the
abstractions 7" as operators on the lattice of upper Moore families.

4.1 “Upper” abstraction

The “upper” abstraction was already given in example (5): from an abstraction
v € uco(p (X)), we define 7,,(p) = {X | X Cwvep(X)}.

Then we can make an equivalence between the elements of 7, and the ele-
ments of v, which helps the calculus.

All these abstractions are less precise than the “generic” upper abstraction,
independent of v: 7y(p) = {X | X C p(X)} This abstraction is represented on
figure (3b).

(b) its “upper” abstraction: {X | X C p(X)}

DI
(a) an example of upper Moore family /N

(c) its generic “interval” abstraction:

{X [p(X) #0AX C p(2)}

Fig. 3. Illustration of a lower closure operator as a Moore family (a), its generic “upper”
abstraction (b) and “interval” abstraction (c).

4.2 “Interval” abstraction

The “interval” abstraction is a combination of an “upper” abstraction and a
“lower” one. The “upper” abstraction was presented before. The “lower” would
give properties on the lowest elements of the lower closure operator p. However,
the lowest element of p is simply (). Thus, we will try to give properties on the
“lower part” of p\{0}. On the other hand, we forget what is between this “lower
part” and the maximum p(X): all elements are possible fixpoints.

Our “generic” abstraction is then:

To(p) = {B}U{X | 3(Y,Z) € Y £0AY CX C Z)

An illustration of this abstraction is given Fig. (3c).
Described with closure operators, we see that this abstraction keeps p~!({0})

(ie. 71 ({0}) = (Mo (p)) " ({O1)):

~ 0 if X ¢ {Y | p(Y)#0
To(p) = AX. { X Np(%) otherwise ’ }

With this definition, Yo(p) is represented by an element of p (X) and an
element of p (p (X)). The first one, p(X), can be easily abstracted. However, the
second one ({Y | p(Y) # 0}) is difficult to approximate. A possible approach
would be to choose a (lower) approximation of ({Y | p(Y) # 0}. In practical
cases, this approach often gives (). Thus, we propose another alternative, which
consists in abstracting each element of the set before intersecting them in the
abstract domain. The more the abstract intersection keeps informations, the
better this alternative will be. Following this principle, we will use a Galois
connection for this abstraction: we do not require the abstraction function to be
surjective.

Starting from an abstraction of p(X) described as a Galois connection

o (%) % X% (Z* being a complete lattice), we define 1, , € uco (Ico (p (X))
as:

_ 0 if a(X) CF M{a(Y)|Y €
Tar(p) = AX. {X Ny o a(p(X)) otﬁerwise]) (3)

We can remark that all elements of 7, , can be represented by an element
of X# x Xt

Theorem 2. 1, , € wuco (lco (p (X)), and To,y T Yo. Furthermore, 1o is
associated to the Galois connection:

(o (9 (£)),) 25 (5, 2) x (5%,F)
a*(p) = (MHa(Y) | Y € p}, alp(%)))
v*(l,u) = {X | I C* a(X) C* u}

Remark 2. If p is generated by A, then
a*(p) = (M{a(Y) | Y € A}, a(UA))

Thus we do not need to compute the whole Moore family to get the abstract
element.

Ezample 7. We choose X = Z and X% = Z*®° xZ*°, with a(X) = (min X, max X)

and y(m,M) = {i | m < i < M} (this is the numerical interval domain [2],

except that we do not restrict this domain to “true” intervals, where m < M).
If p is generated by {{n,n + 3} | n > 1}, then a*(p) = ((+o0,4), (1, +0)),

and
% 0 if max X < 4

an(p) = AX. { X N1, 400 otherwise

We can see that this approximation is more precise than the “upper-only” ab-
straction used in the example (5).

Remark 3. As we can see in the example above, using a Galois connection for
the abstraction of p (X) is very important: we can use a larger abstract domain
X* with @ non-surjective, to obtain a better precision. On the contrary, using
the classical interval domain for * (where all elements (m, M) with m > M are
collapsed into L) would give (L, (1,+00)) for a®(p), which is less precise. Since
all closure operators induce a surjective Galois connection, we can not use this
framework here.

5 Conclusion

We have shown how lower closure operators can be used in verification in the
abstract interpretation framework. Starting from a condition on the final result,
we derive a new analysis which can be combined with the initial one. The news
semantics is a refinement of the original one, stable for the property we want to
check, so the abstract semantics will be more precise. The work of Giacobazzi
and al. about completion of abstractions is used to get the concrete description
of the new analysis and to prove its general correctness.

The main point of our contribution is the possibility of abstracting this new
analysis to compute automatically an abstract lower closure operator which can
be used in the original abstract analysis. Lower closure operators are needed be-
cause they can be over-approximated while keeping the correctness of the (upper)
analysis, something which would not work with upper closure operators. Thus,
the efficiency of this approach relies mainly on the efficiency of the abstractions
on leo (D).

This paper showed examples of abstractions on lco (D), but many other ab-
stractions can be developed. For example, we can construct new abstractions
from existing one by using the structure of D (as a Cartesian product, or as a
lattice of functions). This work is essential for the design of a real analyzer which
would use this approach.

Acknowledgments I wish to thank the anonymous referees, as well as Rad-
hia and Patrick Cousot and Francesco Logozzo for their helpful comments and
suggestions.

References

1. P. Cousot. Méthodes itératives de construction et d’approrimation de point fizes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése
és sciences mathématiques, University of Grenoble, March 1978.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles, California, 1977. ACM Press,
New York, NY.

. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sizth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 269-282, San Antonio, Texas, 1979.
ACM Press, New York, NY.

. P. Cousot and R. Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering, 6(1):69-95, 1999.

. P. Cousot and R. Cousot. Software analysis and model checking. In E. Brinksma and
K.G. Larsen, editors, Proceedings of the 14th International Conference on Computer
Aided Verification, CAV 2002, Copenhagen, Denmark, LNCS 2404, pages 37-56.
Springer-Verlag Berlin Heidelberg, 27-31 July 2002.

. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. Journal of the ACM, 47(2):361-416, 2000.

. P. Granger. Improving the results of static analyses of programs by local decreasing
iterations. In R. K. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, 12th conference, New Dehli, India, volume 652 of
Lecture Notes in Computer Science, pages 68—79. Springer-Verlag, 1992.

. D. Massé. Combining backward and forward analyses of temporal properties. In O.
Danvy and A. Filinski, editors, Proceedings of the Second Symposium PADO’2001,
Programs as Data Objects, volume 2053 of Lecture Notes in Computer Sciences,
pages 155-172, Arhus7 Denmark, 21 — 23 May 2001. Springer-Verlag, Berlin, Ger-
many.

. D. Massé. Semantics for abstract interpretation-based static analyzes of temporal
properties. In M. Hermenegildo, editor, Proceedings of the Ninth Static Analysis
Symposium SAS’02, volume 2477 of Lecture Notes in Computer Sciences, pages 428
— 443, Madrid, Spain, 17 — 20 September 2002. Springer-Verlag, Berlin, Germany.

