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Résumé de la thèse

L’analyse statique par interprétation abstraite permet d’inférer des propriétés sur
un programme par abstraction de sa sémantique. Ces propriétés permettent entre
autres de vérifier si le programme satisfait ou non une spécification. Toutefois, si
la spécification est connue par avance, on peut en tenir compte lors de l’analyse
pour orienter celle-ci vers la vérification de cette spécification. Dans cette thèse,
nous considérons le cas de spécifications complexes, en prenant comme exemple des
propriétés temporelles comme CTL.

Une façon de prendre en compte la spécification est la combinaison des analyses
avant et arrière, de sorte que les résultats de l’une servent à améliorer les résultats de
l’autre. Nous montrons comment cette combinaison est possible pour des propriétés
temporelles complexes, incluant CTL et des logiques de jeu, en gardant une analyse
d’accessibilité comme analyse avant.

Pour obtenir de meilleurs résultats, il est nécessaire d’adapter l’analyse avant.
Nous définissons alors les systèmes de transition étendus, qui combinent le pro-
gramme et sa spécification. Nous définissons aussi les sémantiques avant et arrière de
ces systèmes de transition étendus et montrons les liens entre elles. Nous présentons
aussi un moyen de les générer.

Une autre approche consiste à inclure la spécification dans le calcul du point fixe
de l’analyse. A partir d’une spécification, nous dérivons par une première analyse
abstraite un « guide », sous la forme d’un opérateur de fermeture, qui sert à spécia-
liser l’analyse principale vers la vérification de la spécification. Nous montrons enfin
qu’il est possible, là aussi, d’itérer le processus. Cette approche permet de dériver
automatiquement une combinaison correcte d’analyses à partir d’une seule analyse
et d’une spécification.
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Chapter 1

Overview

Verifying complex temporal specifications automatically is a hard challenge. Sim-
ulation and testing are not safe. Deductive methods ultimately require human in-
teractions to assist the theorem prover. Model-checking faces resource explosion.
Abstract interpretation-based static analysis relies on the idea of approximation.
Rough abstractions are fast but may be not precise enough, while precise abstrac-
tions appear too costly. A main issue is to take into account the temporal speci-
fication in the abstract analysis: by directing the analysis towards the checking of
the specification as much as possible, we can expect more precise results with fast
abstractions. We show several new approaches to achieve this result.

A common point of all these approaches is the combination of analyses: two
abstract analyses are designed, each one contributing to the verification, and these
analyses are combined, such that the results of one refine the results of the other, in
an iterative manner. In general, one analysis is derived directly from the semantics
of the temporal formulas used for the specification, whereas the other starts from the
condition these formulas must satisfy and computes constraints on the semantics of
the former analysis. Hence, this second analysis is used to drive the first one towards
the checking of the property.

In chapter 3, we study this approach in the case where the second analysis is
merely a reachability analysis. In this case our approach appears as an extension for
complex temporal properties of the already known backward-forward combination
used in abstract testing. The first analysis is based on an algorithm designed to
check forward temporal properties (which use only backward operators). We show
how the combination of this analysis with reachability analyses can be used, under
some conditions, to check a given property. This combination gives better results
than the simple intersection of both abstract analyses made separately. We show
that this combination is not possible for all temporal properties, but can be used
with a superset of CTL and some game semantics.

The main advantage of using a reachability analysis is that it is easy to implement
using existing analyzers. However, general-purpose analyses are not very precise, es-
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CHAPTER 1. OVERVIEW 6

pecially when non-relational abstractions are used. Since the forward analysis is not
“specialised” for the checking of the specification, it cannot keep specific constraints.

In chapter 4, we incorporate the temporal specification into the description of
the program to create a new semantics. To do this, we define an extension of
transition systems: an extended transition system associates with each state several
sets of potential successors. This extension engenders a kind of game semantics,
where the goal of the game is to prove the specification. We define forward and
backward semantics for this extension, both described as sets of free trees, and we
show the relationship between them. Furthermore, we describe how to combine these
semantics, and how to generate an extended transition system from a program and
its specification.

Because they can keep the history of the calculus, like trace semantics for clas-
sical transition systems, these tree-based semantics are very powerful, but they are
quite complex and very hard to abstract precisely and efficiently while keeping the
soundness of the combination.

Another approach, developed in chapter 5, is to express the result of the second
analysis by a lower closure operator which is applied on the first one to guide it.
Then the condition of soundness of the combination is easy to formalize and to
prove. Following this idea, we present a generic construction of the second analysis
from the first, which works for many specifications, including specifications which
use extended transition systems. In the concrete case, this construction is similar to
the construction of fixpoint-complete closure operators. Our contribution allows to
abstract it while keeping the soundness of the combination, even when it is iterated.

Less powerful than tree-based semantics (but we can use both), this approach
may be faster and easier to implement. To design analyzers using this approach,
we need abstractions on domains of lower closure operators. Hence we give some
examples of abstractions.

To complete our work, we develop a small toy analyzer based on the last construc-
tion. A brief description of the analyzer, and some results, are given in chapter 6.

Most of the results already appeared in proceedings of conferences (chapter 3
derives from [Mas01], chapter 4 from [Mas02], and chapter 5 from [Mas03]).



Chapter 2

Introduction

Let us begin with a few definitions, notations and results which will be used through-
out the thesis.

2.1 Mathematical notations

• Z is the set of integers, and Z∞ = Z ∪ {−∞,+∞}.

• A→ B is the set of mappings from A to B. If A and B are partially ordered,
A

m→ B denotes the set of monotone operators from A to B.

• ℘ (X) is the set of subsets of X;

• if (D,≤) is a partially ordered set and a ∈ D, the principal upper ideal gener-
ated by a is denoted (↑≤ a) = {b ∈ D | a ≤ b}1. Furthermore if X ⊆ D, we
define min X as min X = {a ∈ X | ∀b ∈ X, b ≤ a⇒ b = a}.

• The least fixpoint of an operator f in A→ A is denoted, when it exists, lfp f .
The greatest fixpoint is denoted gfp f . The notation lgfp will be used to denote
either lfp or gfp.

• The least fixpoint greater than a of an operator f in A → A, when it exists,
is denoted lfpa f , or, when this fixpoint is the limit of an upper iteration
sequence [CC79a], luis (f, a). Dually, the greatest fixpoint lower than a is
denoted gfpa f , or llis (f, a).

1When there is no ambiguity, we will note (↑ a) instead of (↑≤ a).

7



CHAPTER 2. INTRODUCTION 8

2.2 Semantics of a program

2.2.1 Transition system

The goal of static analysis is to analyse automatically programs and give informations
about their behaviours. Thus, the first step of static analysis is the derivation of a
mathematical meaning for each program, its semantics.

Even if our goal is to analyse programs written in real languages (and we intend to
use the structure of the language in the conception of the analyzer), for general results
we want to deal with programs independently of the language used. Therefore, we
will consider programs as transition systems.

Definition 2.2.1 (Transition system) A transition system is a tuple 〈Σ, τ〉 where
Σ is a set of states, and τ ⊆ Σ× Σ is a transition relation on Σ.

In general, transition systems are generated by a small-step operational seman-
tics [Plo81]. τ being a transition relation, we will note τ∗ the transitive closure of τ ,
and τ−1 the inverse of τ .

Given a transition relation τ , we define the four predicate transformers:

Definition 2.2.2 (Predicate transformers) τ being a transition relation on a set
Σ, and X being a subset of Σ, we define:

post [τ ](X) = {σ′ ∈ Σ | ∃σ ∈ X, (σ, σ′) ∈ τ}
p̃ost [τ ](X) = {σ′ ∈ Σ | ∀σ ∈ Σ, (σ, σ′) ∈ τ ⇒ σ ∈ X}
pre[τ ](Y ) = {σ ∈ Σ | ∃σ′ ∈ Y, (σ, σ′) ∈ τ}
p̃re[τ ](Y ) = {σ ∈ Σ | ∀σ′ ∈ Σ, (σ, σ′) ∈ τ ⇒ σ′ ∈ Y }

(2.1)

When there is no ambiguity, we will write post(X), p̃ost(X),. . . , instead of
post [τ ](X), p̃ost [τ ](X),. . . . post(X) are the successors of X, wherereas p̃ost(X)
are the states which have all their predecessors in X. These relations are straight-
forward:

p̃ost(X) = Σ\post(Σ\X)
p̃re(X) = Σ\pre(Σ\X)

Y ⊆ p̃ost(X) ⇔ pre(Y ) ⊆ X

Y ⊆ p̃re(X) ⇔ post(Y ) ⊆ X

post and p̃ost are forward predicate transformers, whereas pre and p̃re are back-
ward predicate transformers.

2.2.2 Semantics

Many semantics can be defined for transition systems, most of them related [Cou02].
We present here several semantics expressed as sets of states:
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Proposition 2.2.3 ([Cou81]) Let 〈Σ, τ〉 be a transition system.

• The set of states reachable from a set of initial states I is equal to FI =
post [τ∗](I) = lfpλX.(I ∪ post [τ ](X)). It is called the forward collecting se-
mantics of the transition system.

• The set of states which can lead to one of the final states F is equal to BF =
pre[τ∗](F ) = lfpλX.(F ∪ pre[τ ](X)). It is called the backward collecting se-
mantics of the transition system.

FI is a forward semantics of the transition system 〈Σ, τ〉, whereas BF is a back-
ward semantics.

More generally, forward semantics propagate information from the past to the
future of the computation (or reproduce the execution of the program), whereas
backward semantics propagate information from the future to the past of the com-
putation (or reproduce the reverse execution of the program).

2.3 Temporal properties

Following examples from the model-checking community [CGP99], we will use tempo-
ral logics for specifying programs. Temporal logics have proved to be useful because
they can describe the relation between temporal events, without expressing time
explicitely.

Many temporal logics are defined in the literature. For example, the
x
µ
∗
-calculus, described in [CC00], is a complex temporal logic with backward and

forward temporal operators, and which formulas are interpreted as sets of traces.
However, we will restrict ourselves to quite simple temporal logics:

1. As we want to specify programs, at any time only the current state of the
computer is important, and not the trace. Thus, we will restrict the formulas
to be state formulas, which are true (or false) in a specific state.

2. In general, checking the specification consists of verifying that the initial states
satisfy the temporal formulas. Thus, these formulas describe the future of the
computation. Following this approach, we will restrict ourselves to forward
temporal logics (which use only predecessor operators).

On the other hand, we will also use game logics, to give the possibility of distin-
guishing between the various kinds of non-determinism in the program.

Following these principles, we present the temporal logics we will use: a form of
µ-calculus and its subset CTL, and the game logics Aµ-calculus.
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2.3.1 µ-calculus and CTL

µ-calculus

Kozen’s µ-calculus [Koz83] is a powerful language for expressing properties of tran-
sition systems, which includes many temporal and program logics. Since formulas
are interpreted relatively to a transition system, this is highly convenient to specify
properties on the program. For the sake of simplicity, we will use the µ-calculus with
only one action.

The µ-calculus is defined by the following grammar:

ϕ ::= p | ¬p | X | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ | µX.ϕ | νX.ϕ.

Here p ∈ AP is an atomic proposition, X ∈ V is a variable, ¬ is negation, ∧
conjunction, ∨ disjunction, ♦ and � are the backward operators, and µ and ν the
least and greatest fixpoint operators. We consider only closed formulas with no free
variables.

We use the notation µ
ν to denote either µ or ν.

We restrict negation to atomic propositions. This restriction ensures the mono-
tonicity of formulas inside fixpoint operators, and is possible because the negation
can be pushed down using the dualities:

¬(ϕ1 ∨ ϕ2) → (¬ϕ1) ∧ (¬ϕ2)
¬(ϕ1 ∧ ϕ2) → (¬ϕ1) ∨ (¬ϕ2)
¬(�ϕ) → ♦(¬ϕ)
¬(♦ϕ) → �(¬ϕ)

¬(νX.ϕ(X)) → µX.(¬ϕ(¬X))
¬(µX.ϕ(X)) → νX.(¬ϕ(¬X))

To interpret a formula in a transition system 〈Σ, τ〉, we need a mapping L : Σ→
℘ (AP) which gives the set of atomic proposition true in a state. As we need to
interpret non-closed formulas, we use e : V → ℘ (Σ) to denote an environment.

Then, given L, the set JϕKe of states in which ϕ is true for the environment e is
defined as follows:

JpKe = {σ | p ∈ L(σ)}
J¬pKe = {σ | p /∈ L(σ)}
JXKe = e(X)
Jϕ1 ∧ ϕ2Ke = Jϕ1Ke ∩ Jϕ2Ke

Jϕ1 ∨ ϕ2Ke = Jϕ1Ke ∪ Jϕ2Ke

J♦ϕKe = {σ | ∃σ′ ∈ JϕKe, (σ, σ′) ∈ τ}
J�ϕKe = {σ | ∀σ′ ∈ Σ, (σ, σ′) ∈ τ ⇒ σ′ ∈ JϕKe}
JµX.ϕKe = lfpλS.JϕKe[X←S]

JνX.ϕKe = gfpλS.JϕKe[X←S]
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We can see that:
J♦ϕKe = pre[τ ](JϕKe),
J�ϕKe = p̃re[τ ](JϕKe).

Thus we can interpret a µ-calculus formula with the two predicate transformers pre
and p̃re, and the fixpoint operators. When the set of states is finite, we can compute
JϕK using pre and p̃re. This is the principle of the model-checking algorithms for the
verification of finite-state models.

When ϕ is closed, we will omit the environment and write its interpretation JϕK.

CTL

CTL (Computation Tree Logic) [CE81] can be defined as a part of the µ-calculus.
CTL formulas are defined by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ
| AϕUϕ | EϕUϕ | AϕRϕ | EϕRϕ

A and E are path quantifiers, and distinguish between conditions for all paths
(A) and for some path (E) starting from a particular state.

X, F, G, U and R are the temporal operators, and describe requirements on
the future states. X (“next time”) refers to the next state, F (“eventually”) to some
state in the future, G (“globally”) to all states in the future. U (“until”) requires
that the second property holds at some state in the future, and that the first one
holds until this state. R (“release”) is the logical dual of U. It requires that the
second properties holds up to and including a state where the first property holds,
or infinitely if the first property never holds.

The correspondences between CTL and µ-calculus are as follows:

EXϕ ←→ ♦ϕ,

AXϕ ←→ �ϕ,

EFϕ ←→ µX.(ϕ ∨ ♦X),
AFϕ ←→ µX.(ϕ ∨�X),
EGϕ ←→ νX.(ϕ ∧ ♦X),
AGϕ ←→ νX.(ϕ ∧�X),

Eϕ1Uϕ2 ←→ µX.(ϕ2 ∨ (ϕ1 ∧ ♦X)),
Aϕ1Uϕ2 ←→ µX.(ϕ2 ∨ (ϕ1 ∧�X)),
Eϕ1Rϕ2 ←→ νX.(ϕ2 ∧ (ϕ1 ∨ ♦X)),
Aϕ1Rϕ2 ←→ νX.(ϕ2 ∧ (ϕ1 ∨�X)).

2.3.2 Aµ-calculus

Many properties are not expressible in CTL or µ-calculus. To prove the gener-
ality of our approach, we will use a game logic: the alternating time µ-calculus
(Aµ) [AHK97]. The properties are defined on alternating transition systems:
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Definition 2.3.1 (Alternating transition system [AHK97]) An alternating
transition system is a tuple 〈P,Σ,∆〉, with P a set of players, Σ a set of states,
and ∆ = {δi : Σ→ ℘ (℘ (Σ)) | i ∈ P} a set of transition functions.

Informally, an ‘alternating transition systems works the following way: when the
system is in state σ, each player a must choose a set Σa ∈ δa(Σ), and the successor
of the state σ must lie in

⋂
a∈P Σa

2.
In this definition of an alternating transition system, we change the usual notation

to keep Σ as the set of states, as for standard transition systems. Also, we do not
include the set of atomic propositions and their interpretation.

The equivalent of the predecessor operators pre and p̃re for alternating transi-
tion systems are the controllable and uncontrollable predecessor relations, defined
in [HMMR00]. In the general case, letting I ∈ ℘ (P) \{∅} be a team of players, they
are defined as:

σ ∈ CPreI(S) iff ∃(τi ∈ δi(σ))i∈I ,∀(τi ∈ δi(σ))i/∈I .
⋂
i∈P

τi ⊆ S

σ ∈ UPreI(S) iff ∀(τi ∈ δi(σ))i∈I ,∃(τi ∈ δi(σ))i/∈I .
⋂
i∈P

τi ⊆ S

Thus, σ ∈ CPreI(S) means that, when the system is in state σ, the team I can
force the next state to be in S, whereas σ ∈ UPreI(S) means that in state σ, the
team I cannot force the game outside S. Of course, if there is only one player, these
two operators are equivalent to pre and p̃re.

We can also define a post operator for alternating transition systems, representing
the possible successor states of a set of states:

post(S) =
⋃
σ∈S

(
⋂

a∈P

⋃
δa(σ)) (2.2)

Alternating-time µ-calculus

Aµ formulas are generated by the grammar:

ϕ ::= p | ¬p | x | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈〈I〉〉 © ϕ1 | JIK© ϕ1 | (µx.ϕ1) | (νx.ϕ2)

p ∈ Π are atomic propositions, variables x are in a set X, and teams I are in ℘ (P).
Letting E : X → ℘ (Σ) map each variable to a set of states, a formula ϕ defines

2In general, it is assumed that the intersection is always a singleton, so the transition function
is nonblocking and “deterministic”.
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a set of states JϕKE as follows:

JpKE = π(p)
J¬pKE = Σ\π(p)
JxKE = E(x)
Jϕ1 ∧ ϕ2KE = Jϕ1KE ∩ Jϕ2KE
Jϕ1 ∨ ϕ2KE = Jϕ1KE ∪ Jϕ2KE
J〈〈I〉〉 © ϕ1KE = CPreI(Jϕ1KE)
JJIK© ϕ1KE = UPreI(Jϕ1KE)
Jµx.ϕ1KE = lfp λρ.Jϕ1KE[x7→ρ]

Jνx.ϕ1KE = gfp λρ.Jϕ1KE[x7→ρ]

When ϕ is closed, we write JϕK instead of JϕKE .
When Σ is finite, it is possible to compute JϕK using the operators CPreI and

UPreI . Model-checking algorithms on Aµ-calculus formulas use this principle.

2.4 Abstract interpretation

When the set of states is finite, model-checking algorithms can be used to check
temporal formulas. But when the set of states is infinite, or too large, these algo-
rithms are not usable. In fact, most temporal properties are simply not decidable
for all programs. Therefore, an analyzer must use approximations, and sometimes
be unable to prove or refute the property.

A good program analyzer should be efficient (with a good trade-off between
precision and cost) and safe (all its answers must be correct). Abstract interpreta-
tion [CC77, Cou78, CC92a, CC92b] is a theory which is aimed to provide safe and
efficient analyses for real programs (cf. for example [BCC+02] for an application of
abstract interpretation to real-time critical software).

Abstract interpretation is based on the idea of approximations between concrete
and abstract domains (e.g. domains of properties). Though we do not intend to
show here the whole framework of abstract interpretation, we present some results
we will use in the following chapters.

2.4.1 Galois connection and fixpoint approximations

We just give a few well-known results on Galois connections and fixpoint approxi-
mations.

Definition 2.4.1 (Galois connection [CC77]) Let P [(v[,⊥[,>[,u[,t[)
and P ](v],⊥],>],u],t]) be two complete lattices. Then α ∈ P [ → P ] and γ ∈
P ] → P [ define a Galois connection (denoted P [ −→←−α

γ
P ]) if and only if:

∀X ∈ P [,∀Y ∈ P ], α(X) v] Y ⇐⇒ X v[ γ(Y ).



CHAPTER 2. INTRODUCTION 14

Theorem 2.4.2 (Fixpoint abstract approximation [Cou78, CC92a]) Let
(P [,v[,⊥[,>[,u[,t[) and (P ],v],⊥],>],u],t]) be two complete lattices related
by a Galois connection P [ −→←−α

γ
P ], and F [ ∈ P [ → P [, F ] ∈ P ] → P ] be two

monotonic functions.
If F ] and F [ satisfy

∀X ∈ P [, α ◦ F [(X) v] F ] ◦ α(X),

then:
α(lfpF [) v] lfp F ],
α(gfp F [) v] gfpF ].

Widening and narrowing operators

The fixpoint approximation theorem is used to compute upper approximations of
concrete fixpoints in the abstract domain. To accelerate the convergence of this
computation (or to make it possible when the lattice does not satisfy the ascending
chain condition), we may use widenings and narrowings [CC77].

Though most of the results presented in this thesis concerning soundness of ab-
stract analysis are proved without considering widenings and narrowings, in general
these operators aimed to accelerate convergence can be used without loss of sound-
ness.

Backward and forward abstract analyses

From these results, FI and BF can be approximated:

Proposition 2.4.3 (Abstract analyses [Cou81]) Let 〈Σ, τ〉 be a transition sys-
tem, and (P ],v],⊥],>],u],t]) a complete lattice related to ℘ (Σ) by a Galois con-
nection ℘ (Σ) −→←−α

γ
P ].

Let pre] and post] be two monotonic operators such that:

∀X ⊆ Σ,
α ◦ pre(X) v] pre] ◦ α(X),
α ◦ post(X) v] post] ◦ α(X).

Then:
FI ⊆ γ(lfpλX.(α(I) t] post](X))),
BF ⊆ γ(lfpλX.(α(F ) t] pre](X))).

Using this result, we can construct approximations of the forward and backward
collecting semantics.
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Fixpoint combination

To check unreachability properties (i.e. to verify that a program will not reach error
states F ), an efficient approach is to approximate FI ∩ BF .

To approximate FI ∩ BF , one could intersect the approximated fixpoints. How-
ever, a better approximation has been proposed in [Cou78]. It uses the combination
of both abstract analyses, each one being used to enhance the result of the other.
Since we intend, in chapter 3, to extend this result, we give first one lemma we intend
to exploit, before the standard result.

Lemma 2.4.4 ([CC92a]) Let P [(v[,⊥[,>[,u[,t[) and P ](v],⊥],>],u],t]) be
complete lattices with a Galois connection P [ −→←−α

γ
P ], F [ ∈ P [ → P [ and B[ ∈

P [ → P [ be two monotonic functions, and let

L[ = gfpλZ.(Z u[ F [(Z) u[ B[(Z)).

If F ] ∈ P ] → P ] and B] ∈ P ] → P ] are monotonic and satisfy α ◦ F [ v] F ] ◦ α
and α ◦ B[ v] B] ◦ α, then, with L] = gfpλZ.(Z u] F ](Z) u] B](Z)), we have:

L[ ⊆[ γ(L]).

This approximation of L[ is the best approximation we can obtain with F ], B],
u] and t] [CC79a].

When F [ = λZ.lfp λX.(Z∩(I∪post(X))) and B[ = λZ.lfp λX.(Z∩(F∪pre(X))),
we have L[ = FI ∩ BF [Cou78]. Hence:

Proposition 2.4.5 (Fixpoint meet approximation [Cou78]) With the hypoth-
esis of Proposition 2.4.3, we define:

F ] = λZ.lfp λX.(Z u] (α(I) t] post](X)))
B] = λZ.lfp λX.(Z u] (α(F ) t] pre](X)))

Then α(FI ∩ BF ) v] gfpλZ.(Z u] F ](Z) u] B](Z)).

This technique is well known and used, for example, in Bourdoncle’s analyzer
“Syntox” [Bou93]. This is the first example of property-driven analysis, where the
specification (the set of “error” states which must be unreachable) is used in the
reachability analysis (the forward one).

2.4.2 Closure operators

Another framework to express abstractions is the framework of closure
operators [Cou78]. Whereas the Galois connection framework is useful to abstract
concrete domains into machine-representable abstract domains, closure operators
enable us to study abstractions independently of the abstract domain. More gener-
ally, closure operators are useful to modify monotone operators while keeping some
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of their properties. As we will use them (specifically lower closure operators) in our
presentation of property-driven analysis (chapter 5), we recall here known results
about them.

In this section 〈D,≤,∨,∧,⊥,>〉 is a complete lattice.

Definition 2.4.6 (Closure operators) An operator ρ on D is an upper (resp.
lower) closure operator if and only if it is monotonic, extensive3 (resp. reductive4)
and idempotent.

To clarify notation, when lower closure operators and upper closure operators
appear in the same formulas, we use overlines (ρ) to denote upper closure operators.

The link between Galois connections and closure operators is given in the follow-
ing proposition:

Proposition 2.4.7 ([Cou81]) If D] is a complete lattice, and D −→←−α
γ

D] is a
Galois connection, then ρ = γ ◦ α is an upper closure operator (and ρ] = α ◦ γ is a
lower closure operator).

Upper closure operators and lower closure operators are dual notions. Since we
intend to use both simultaneously, and lower closure operators are less widely used,
we focus this presentation of already known results on lower closure operators.

It is well-known that lower (or upper) closure operators on a complete lattice
form a complete lattice:

Theorem 2.4.8 ([Cou78]) The set lco (D) of lower closure operators on D is a
complete lattice 〈lco (D) ,v,t,u, λx.x, λx.⊥〉, with:

ρ v ρ′ ⇐⇒ ∀x ∈ D, ρ(x) ≤ ρ′(x),⊔
i∈∆ ρi = λx.

∨
i∈∆ ρi(x),

d
i∈∆ ρi = λx.lfp λy.(x ∧

∧
i∈∆ ρi(y)).

Dually, we will note 〈uco (D) ,v,t,u, λx.>, λx.x〉 the complete lattice of upper
closure operators on D.

Closure operators are closely related to Moore families:

Definition 2.4.9 (Moore families) An upper (resp. lower) Moore family of D
is a subset L of D such that L = Mu (L) = {∨X | X ⊆ L} (resp. L = Ml (L) =
{∧X | X ⊇ L}).

Proposition 2.4.10 ([War42, Cou78]) Any lower closure operator ρ is uniquely
determined by the set of its fixpoints ρ(D), which is an upper Moore family. Re-
ciprocally, any upper Moore family L on D defines a lower closure operator ρ =
λx.

∨
y∈L(y ≤ x) for which L are exactly its fixpoints.

3i.e. ρ(x) ≥ x for all x
4i.e. ρ(x) ≤ x for all x
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lco (D) and the lattice of upper Moore families in D are isomorph, with the
following correspondences:

ρ v ρ′ ⇐⇒ ρ(D) ⊆ ρ′(D)⊔
i∈∆ ρi =Mu

(⋃
i∈∆ ρ(D)

)
d

i∈∆ ρi =
⋂

i∈∆ ρ(D)

We will use interchangeably lower closure operators and upper Moore families
(and dually upper closure operators and lower Moore families). When there is no
ambiguity, we will denote ρ(D) by ρ itself.

Soundness and completeness

Closure operators, as abstractions, can be used to approximate fixpoints.

Proposition 2.4.11 (Soundness [CC79b]) For all φ ∈ D
m→ D and ρ ∈ lco (D),

we have:
ρ ◦ φ ◦ ρ ≤ ρ ◦ φ
ρ(lfpφ) ≥ lfp (ρ ◦ φ)
ρ(gfp φ) ≥ gfp (ρ ◦ φ).

The soundness proposition shows that the fixpoint of the abstract operator
(lgfp (ρ ◦ φ)) is “correct”, but less precise than the abstraction of the concrete fix-
point (ρ(lgfpφ)). When the precision is the same, the abstraction (or the closure
operator) is said to be complete:

Definition 2.4.12 (Completeness) ρ ∈ lco (D) is said to be complete for a mono-
tone operator φ iff ρ ◦ φ ◦ ρ ≥ ρ ◦ φ (and so ρ ◦ φ ◦ ρ = ρ ◦ φ).

Whereas soundness is always satisfied for all φ, completeness is always relative to
an operator (or a set of operators). When we do not state the operator, completeness
will be for φ.

The following proposition gives the relation between completeness and fixpoint
completeness.

Proposition 2.4.13 (Fixpoint completeness) Let ρ be a lower closure operator
and φ a monotone operator.

1. If ρ is complete (with respect to φ), then it is gfp-complete (i.e. ρ(gfp φ) =
gfp (ρ ◦ φ)).

2. If ρ is complete and continuous, then it is lfp-complete (i.e. ρ(lfpφ) = lfp (ρ ◦
φ)).
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(we recall that a monotone operator φ is continuous (resp. co-continuous) iff for all
increasing (resp. decreasing) chains A in D, φ(

∨
A) =

∨
a∈A φ(a) (resp. φ(

∧
A) =∧

a∈A φ(a)))
For upper closures, it is well-known that completeness implies lfp-completeness.

This result was first presented by Cousot and Cousot [CC79b]. However, complete-
ness does not imply gfp-completeness. Thus, for lower closure operators, getting
completeness is not sufficient to ensure the property of lfp-completeness.

Example 2.4.14 We choose D = ℘ (Z) and φ = λX.{0} ∪ {x + 1 | x ∈ X}. We
know that lfp φ = [0,+∞[. Let ρ = {∅, [0,+∞[}. Since ρ is an upper Moore family,
ρ defines a lower closure operator, and one can check easily that ρ is complete for
φ. However, lfp ρ ◦ φ = ∅, and ρ is not lfp-complete.

Construction of complete closures

In the construction of property-driven analysis, we need fixpoint-complete operators.
Hence we detail the known results on the construction of complete (and fixpoint-
complete) closures.

The problem was studied by Giacobazzi, Ranzato and Scozzari. We will use the
dual of [GRS00, Thm. 5.10]:

Theorem 2.4.15 (Complete closures [GRS00]) Let ρ0 be a lower closure oper-
ator on D. If φ is co-continuous, then:

Rφ = λη. Mu
(
∪a∈η min(φ−1(↑ a))

)
and Rφ(ρ0) = lfpv λη.(ρ0 tRφ(η))

(2.3)

are well defined and Rφ(ρ0) is the lowest complete lower closure operator greater
than ρ0

5.

When φ is not co-continuous, we cannot apply the min operator in this formula6.
However, with min′ : ℘ (D)→ ℘ (D) satisfying:

• ∀X ⊆ D,min′(X) ⊆ X,

• ∀X ⊆ D,∀a ∈ X,∃a′ ∈ min′(X) s.t. a′ ≤ a,

we can define Rφ and Rφ as:

Rφ = λη.Mu
(
∪a∈η min′(φ−1(↑ a))

)
and Rφ(ρ0) = lfpv λη.(ρ0 tRφ(ρ0))

(2.4)

Then Rφ(ρ0) is a complete lower closure operator greater than ρ0 (though it may
not be minimal).

5Rφ(ρ0) is called as the complete shell of ρ0.
6Because the formula ∀a ∈ D, ∀x ∈ D, x ∈ φ−1(↑ a) ⇒ ∃y ∈ min(φ−1(↑ a)), y ≤ x does not

hold.
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From this result, we can construct gfp-complete operators. To construct lfp-
complete operators, we need completeness and continuity. We can achieve this goal
by using an extensive operator C on lco (D) such that C(lco (D)) includes only
continuous operators7.

Proposition 2.4.16 Let C be an extensive operator on lco (D) such that, for all
lower closure operator η, C(η) is ≤-continuous. Then C ◦ Rφ (with Rφ defined either
by equation (2.3) or by equation (2.4)) is an extensive operator, and luis (C ◦ Rφ, ρ0)
is a continuous complete lower closure operator greater than ρ0 (thus, it is lfp-
complete).

Example 2.4.17 We give three examples for C.

• As λa.a is continuous, C = λη.(λa.a) satisfies the conditions of the proposi-
tion. This example is trivial, but it proves the existence of at least one possible
operator for any lattice D.

• When D = ℘ (Σ), λa.(a∩X) for X ⊆ Σ is a continuous lower closure operator.
Therefore, C defined by C(η) = λa.(a∩ η(Σ)) for all η satisfies the conditions.
This example is interesting, as C is an upper closure operator and all elements
of C(lco (D)) can be defined by a subset of Σ. Thus, we will be able to use
abstractions of ℘ (Σ) to abstract lower closure operators.

• Still when D = ℘ (Σ), let S be a finite subset of Σ. Then, for all η ∈ lco (D),
CS(η) = λa.(a ∩ η(a ∪ (Σ\S))) is a continuous lower closure operator greater
than η (informally, CS(η) is close to λa.(a∩η(Σ)) “outside”S and to η “inside”
S). Hence CS satisfies the conditions needed for C (furthermore, it is also an
upper closure operator on lco (D)). Of course, when S = ∅ we get the previous
example, and when S = Σ, CS is the identity on lco (℘ (Σ)) (all operators are
continuous). As the precision increase with the size of S, we can control the
loss of precision induced by the operator.

7To our knowledge, this construction was not proposed before, hence this result may be not
“already known”. But it is the most intuitive solution to construct lfp-complete lower closure
operators, and so we present it in this chapter.



Chapter 3

Combination for complex
properties

In the previous chapter, we decided to focus on forward temporal properties to
express specifications. Hence the set of states satisfying the specification can be
expressed by a formula using only backward operators. We can thus easily derive
from this formula an abstract backward analysis to compute an over-approximation
of this set of states. This is the principle of abstract model-checking algorithms which
involve abstractions of states [BCM+92, TXJS92, HMMR00]. However, in general
this method requires precise abstractions, done by hand, to be precise enough.

A useful amelioration would be to extend the backward-forward combination (as
it is recalled in section 2.4.1) for this kind of backward analysis.

In this chapter we study the extension of this method to more complex properties,
first with one fixpoint, and then with several fixpoints.

3.1 Combination with one fixpoint

In this section, we study the extension of the combination to backward analyses
expressed with one fixpoint.

Let Σ be a set of states, and (℘ (Σ) ,⊆, ∅,Σ,∩,∪) is the concrete domain of the
analysis. I ⊆ Σ is the set of initial states of the program. We denote (P ],v]

,⊥],>],u],t]) the abstract domain, related to the concrete domain by a Galois
connection ℘ (Σ) −→←−α

γ
P ].

To get symmetry between the concrete and the abstract domains, we define
P [ = ℘ (Σ), v[=⊆, ⊥[ = ∅, >[ = Σ, u[ = ∩, t[ = ∪.

20
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Backward semantics

From our specification, we derive a monotone backward operator b[ ∈ ℘ (Σ) m→ ℘ (Σ)
such that the set of states satisfying the specification is equal to S = lgfp b[. We
define B[ = λZ.lgfpλX.(Z∩b[(X)). Then B[ is a monotone operator, and S = B[(Σ).

An abstract backward operator b] is associated to b[, with the relation:

∀X ∈ ℘ (Σ) , α ◦ b[(X) v] b] ◦ α(X)

With B] = λZ.lgfp λX.(Z u] b](X)), we know that

∀X ∈ ℘ (Σ) , α ◦ B[(X) v] B] ◦ α(X)

Note that we use upper approximations. This choice is imposed by our goal to
apply the combination to approximate intersections of semantics. Lower approxi-
mations, used in abstract model-checking [HMMR00], can not be used in this case.
Since efficient automatic abstractions are mostly upper abstractions, this restriction
is not problematic.

Forward semantics

On the other side, we keep the forward semantics as the forward collecting semantics,
as it is in the standard backward-forward combination. Thus, if I ⊆ Σ is the set of
initial states of the analysis:

F [ = λZ.lfp λX.(Z ∩ (I ∪ post(X))).

Here, post is defined by the equation (2.1) or by the equation (2.2), depending on
the nature of the program. To have symmetric notations, we define f [ = λX.(I ∪
post(X)).

As for the backward semantics, we suppose the existence of f ] such that:

∀X ∈ ℘ (Σ) , α ◦ f [(X) v] f ] ◦ α(X),

and we define F ] = λZ.lfpλX.(Z u] f ](X)).

Combination

The concrete combination between B[ and F [ is defined as:

L[ = gfpλZ.(Z ∩ B[(Z) ∩ F [(Z)).

The abstract combination is L] = gfpλZ.(Z u] B](Z) u] F ](Z)).
We know, by the lemma 2.4.4, that α(L[) v] L], and that L] is the best approx-

imation of L[ we can obtain with B] and F ]. Thus, the combination is useful when
we can use L[ to prove the specification.
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I
F

F [(>[) u[ B[(>[)

L[

Figure 3.1: Example of transition system where L[ 6= F [(Σ) ∩ B[(Σ). Here, b[ =
λX.(F ∪ p̃re(X)). L[ is then the set of states belonging to a trace of states which
satisfy the backward property.

In the “classical” combination, L[ = B[(Σ) ∩ F [(Σ). This equality does not hold
in general: a state may satisfy the backward property and be reachable from an
initial state which does not satisfy the backward property. However, if the goal is
only the verification of the specification for the initial states, we do not need such a
strict condition.

Example 3.1.1 An example is given in Fig. 3.1. We want to verify that the initial
states satisfy φ = µX.(F ∨�X). Then b[ = λX.(F ∪ p̃re(X)). Some states satisfy φ
but are not in L[, and the condition L[ = F [(Σ) ∩ B[(Σ) is not satisfied. However,
in this example, the initial states satisfying φ are in L[, hence we can apply the
combination to verify the specification for the initial states. This is the principle of
the extension of the combination.

3.1.1 Conditions to use the combination

To check the temporal formula, we just need to know the set of initial states which
satisfy B[(Σ), that is I ∩ B[(Σ). Thus the combination is useful if the equality:

I ∩ B[(Σ) = I ∩ L[ (3.1)

is satisfied. Of course, this equality is satisfied in the classical case.
The condition (3.1) is implied by another equality, easier to check:
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Lemma 3.1.2 If
L[ = F [(B[(Σ)), (3.2)

then the equation (3.1) holds.

Proof. As L[ = F [(B[(Σ)) = lfp λX.(B[(Σ)∩ (f [(X))), it is clear that L[ ⊆ B[(Σ).
Moreover, the first iteration of the least fixpoint is B[(Σ) ∩ f [(∅), which is equal to
B[(Σ) ∩ I. So we have B[(Σ) ∩ I ⊆ L[, which proves the equation. �

Using the definition of B[ as λZ.lgfpλX.(Z ∩ b[(X)), we deduce the following
theorem, which is used as the principal condition to extend the combination:

Theorem 3.1.3 If:

∀(X, Y ) ∈ ℘ (Σ)2 , Y ⊆ b[(X)⇔ Y ⊆ b[(X ∩ post(Y )), (3.3)

then the hypothesis of Lemma 3.1.2 holds. Thus, equation (3.1) holds.

Proof. We note that the hypothesis implies:

∀(X, Y ) ∈ ℘ (Σ)2 , Y ⊆ b[(X)⇔ Y ⊆ b[(X ∩ f [(Y )). (3.4)

We want to prove that L[ = F [(B[(Σ)). Left-to-right inclusion is the consequence
of the optimality of L[:

L[ = gfpλZ.(Z ∩ F [(Z) ∩ B[(Z))
⊆ F [(F [(Σ) ∩ B[(Σ)) ∩ B[(F [(Σ) ∩ F [(Σ))
⊆ F [(B[(Σ))

Thus, to prove the equality, we need to check that F [(B[(Σ)) is a fixpoint of λZ.(Z∩
F [(Z)∩B[(Z)), that is, to prove that F [(B[(Σ)) ⊆ F [(F [(B[(Σ))) and F [(B[(Σ)) ⊆
B[(F [(B[(Σ))).

The former inequality is true because F [ ◦ F [ = F [. To prove the latter, we
define Ω = F [(B[(Σ)) and Ω′ = B[(F [(B[(Σ))). Here we must distinguish between
least and greatest fixpoint for B[.

• if lgfp = lfp, let (Xn), n ≥ 0 be the (transfinite) iteration sequence starting
from ∅ for b[. We will prove that for all n ≥ 0, Ω ∩Xn ⊆ Ω′. This is true if
n = 0, because X0 = ∅.
If n is a successor ordinal, since Xn = b[(Xn−1), we have Ω ∩Xn ⊆ b[(Xn−1).
Using the hypothesis of the theorem (equation (3.4)), we obtain Ω ∩ Xn ⊆
b[(Xn−1 ∩ f [(Ω ∩Xn)).

Moreover, f [(Ω ∩Xn) ⊆ f [(Ω), and Xn−1 ⊆ B[(Σ). Thus:

Xn−1 ∩ f [(Ω ∩Xn) ⊆ Xn−1 ∩ B[(Σ) ∩ f [(Ω)
⊆ Xn−1 ∩ Ω as Ω = B[(Σ) ∩ f [(Ω)
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Hence, if the inequality holds for n− 1:

Xn−1 ∩ f [(Ω ∩Xn) ⊆ Ω′

Thus Ω∩Xn is included in Ω∩ b[(Ω′), which is equal to Ω′ by definition of Ω′.

When n is a limit ordinal (b[ may be not continuous), if Ω ∩Xn′ ⊆ Ω′ for all
n′ < n, then Ω ∩Xn = Ω ∩

⋃
n′<n Xn′ ⊆ Ω′.

Thus, by transfinite induction, Ω ∩Xn ⊆ Ω′ for all n. As the upper bound of
(Xn) is B[(Σ), which includes Ω, we have Ω ⊆ Ω′.

• if lgfp = gfp, let Xn, n ≥ 0 be the (transfinite) iteration sequence starting
from Σ for λX.(Ω ∩ b[). The limit of Xn is Ω′. X1 = Ω ∩ b[(Σ) = Ω, since
Ω ⊆ B[(Σ) ⊆ b[(Σ). Moreover, since B[(Σ) = b[(B[(Σ)), Ω ⊆ b[(B[(Σ)), so
Ω ⊆ b[(B[(Σ)∩f [(Ω)). As B[(Σ)∩f [(Ω) = Ω, we have Ω ⊆ b[(Ω), and X2 = Ω.
Thus Xn = Ω for all n ≥ 1, and Ω′ = Ω.

�

3.1.2 Applications the several specifications

Theorem 3.1.3 gives an interesting condition to prove the correctness of the combi-
nation.

Proposition 3.1.4 We suppose that 〈Σ, τ〉 is a transition system modelling the pro-
gram.

When b[ = λX.(A ∪ (B ∩ pre(X)) ∪ (C ∩ p̃re(X))), the equality (3.1) holds.

Proof. We want to prove that the equation (3.3) is satisfied.
If Y ⊆ b[(X), then, ∀y ∈ Y :

• if y ∈ A, then y ∈ b[(X ∩ post(Y )).

• if y ∈ B ∩ pre(X), then ∃x ∈ X such that 〈y, x〉 ∈ τ . Therefore, since y ∈ Y ,
x ∈ post(Y ), and y ∈ B ∩ pre(X ∪ post(Y )).

Thus y ∈ b[(X ∩ post(Y )).

• if y ∈ C ∩ p̃re(X), then ∀x ∈ Σ, 〈y, x〉 ∈ τ ⇒ x ∈ X. As y ∈ Y , 〈y, x〉 ∈ τ ⇒
x ∈ post(Y ), so ∀x ∈ Σ, 〈y, x〉 ∈ τ ⇒ x ∈ X ∩ post(Y ).

Thus y ∈ C ∩ p̃re(X ∪ post(Y )), so y ∈ b[(X ∩ post(Y )).

Therefore, Y ⊆ b[(X)⇒ Y ⊆ b[(X ∩ post(Y )). The other side of the equivalence is
automatic. Thus the hypothesis of Thm. 3.1.3 is satisfied, and equation (3.1) holds.
�

So we can use the backward-forward combination to enhance the verification of
properties of the form of: µ

ν X.(A ∨ (B ∧ ♦X) ∨ (C ∧ �X)). These properties are
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F

B(Σ)

I

Figure 3.2: Example of specification for which combination with a reachability anal-
ysis does not work. b[ = λX.F ∪ pre(pre(X)). Whereas there is a initial state which
satisfies the specification, L[ = ∅.

interesting: they allow to distinguish between different kinds of non-determinism
(“controllable”and“uncontrollable”non-determinism), and they include all the basic
CTL constructions.

For game logics, a similar result holds:

Proposition 3.1.5 We suppose that 〈P,Σ,∆〉 is an alternating transition system
modelling the program.

When b[ = λX.(A ∪
⋃

I∈℘(P)(BI ∩ CPreI(X)) ∪
⋃

I∈℘(P)(CI ∩ UPreI(X))), the
equality (3.1) holds.

Proof. The proof is essentially the same as for the non-game case. �
Unfortunately, the extension of this technique to the whole µ-calculus does not

work: for example, a formula like µX.(F ∨♦♦X) leaves “holes” in traces, preventing
combination with forward analysis (cf. figure 3.2).

But, from the results we got for specifications with one fixpoint, we can develop
an algorithm to extend the combination for the verification of complex specifications
with several fixpoints, including the whole CTL.
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3.2 Extension to formulas with several fixpoints

3.2.1 Transition system case

Our program is represented by the transition system 〈Σ, τ〉.
Following the result of proposition 3.1.4, our specification language is the set of

µ-calculus formulas generated by the grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | µ

ν
X.(ϕ ∨ (ϕ ∧ ♦X) ∨ (ϕ ∧�X)).

It is worth noting that all these formulas are closed, and the defined temporal logic
includes CTL. Obviously, the logic does not change if we replace µ

ν X.(ϕ∨(ϕ∧♦X)∨
(ϕ ∧�X)) with µ

ν X.(ϕ ∧ (ϕ ∨ ♦X) ∧ (ϕ ∨�X)) in the above grammar.
Our goal is to obtain a“good”upper approximation Ωϕ(α(I)) of α(I∩JϕK), using

the backward-forward combination to enhance fixpoint computations. We assume
that for all atomic proposition p, we have an upper approximation JpK] of α(JpK)1
(and an upper approximation J¬pK] of α(J¬pK)).

We need abstractions of pre, post and p̃re, and we will respectively denote them
by pre],post] and p̃re]. These abstractions must satisfy, for all X ⊆ Σ:

α ◦ pre(X) v] pre] ◦ α(X)

α ◦ p̃re(X) v] p̃re] ◦ α(X)
α ◦ post(X) v] post] ◦ α(X)

Moreover, since we will need to abstract sets of states reachable from other
sets, we will denote by post∗ and post∗] the functions λX.lfp λY.(X ∪ post(Y )) and
λX.lfp λY.(X t] post](Y )) respectively. Then, of course, α ◦ post∗(X) v] post∗] ◦
α(X) for all X ⊆ Σ.

To simplify notations we denote by L\
lgfp(f, g), with \ ∈ {[, ]}, the expression:

gfp λZ.(lfpλX.(Z u\ f(X)) u\ lgfpλX.(Z u\ g(X)))

L\
lgfp(f, g) is the limit of the decreasing chain Zn defined by Z0 = >\, Z2n+1 =

Z2n u\ lfp λX.(X2n u\ f(X)) and Z2n+2 = Z2n+1 u\ lgfpλX.(X2n+1 u] g(X)).

1which may be α(JpK), if it is computable.
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If ϕ is a formula, we can now define Ωϕ ∈ P ] → P ] as follows:

Ωp(S) = JpK] u] S

Ωϕ1∧ϕ2(S) = gfpλX.(S u] Ωϕ1(X) u] Ωϕ2(X))
Ωϕ1∨ϕ2(S) = Ωϕ1(S) t] Ωϕ2(S)

Ω�ϕ(S) = p̃re](Ωϕ(post](S)))

Ω♦ϕ(S) = pre](Ωϕ(post](S)))

Ωµ
ν X.(ϕ1∨(ϕ2∧♦X)∨(ϕ3∧�X))(S) = L]

lgfp( λX.(S t] post](X)),
λY.( Ωϕ1(post

∗](S))
t]Ωϕ2(post

∗](S)) u] pre](Y )
t]Ωϕ3(post

∗](S)) u] p̃re](Y )))

It is worth noting that even if we replace post∗](S) by >] in the last line, we
still have to compute it as the first iteration that leads to L]

lgfp. However, this
replacement may not change the final result of Ωϕ and makes the computation
much faster (because the computation of Ωϕ(>]) can be simplified). The following
theorem is valid with or without the replacement:

Theorem 3.2.1 For any formula ϕ, and I ⊆ Σ:

α(I ∩ JϕK) v] α(I) u] Ωϕ(α(I))

Thus the computation of Ωφ(α(I)) (or of an upper approximation of Ωφ(α(I)) due
to the use of widenings and narrowings) gives a sound approximation of α(I ∩ JϕK).

Proof. The proof is by induction on the structure of ϕ. By monotony of α, it is
obvious that α(I ∩ JϕK) v] α(I), so we need to prove that α(I ∩ JϕK) v] Ωϕ(α(I)).

If ϕ = p, by monotony of α:

α(I ∩ JpK) v] α(I) u] α(JpK) v] α(I) u] JpK] v] Ωp(α(I))

If ϕ = ϕ1 ∧ ϕ2:

α(I ∩ JϕK) = α(I ∩ JϕK ∩ Jϕ1K ∩ Jϕ2K)
v] α(I) u] α(I ∩ JϕK ∩ Jϕ1K) u] α(I ∩ JϕK ∩ Jϕ2K)
v] α(I) u] Ωϕ1(α(I) ∩ JϕK) u] Ωϕ2(α(I ∩ JϕK))

Thus α(I ∩ JϕK) v] gfpλX.(α(I) u] Ωϕ1(X) u] Ωϕ2(X)), which proves that α(I ∩
JϕK) v] Ωϕ(I).
If ϕ = ϕ1 ∨ ϕ2:

α(I ∩ JϕK) = α(I ∩ (Jϕ1K ∪ Jϕ2K))
= α(I ∩ Jϕ1K) t] α(I ∩ Jϕ2K) since α is additive [CC77]
v] Ωϕ1(α(I)) t] Ωϕ2(α(I))
v] Ωϕ(α(I))
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If ϕ = �ϕ1, we have I ⊆ p̃re(post(I)), so:

α(I ∩ JϕK) v] α(p̃re(post(I) ∩ Jϕ1K))

v] p̃re](α(post(I) ∩ Jϕ1K))

v] p̃re](Ωϕ1(α ◦ post(I)))

v] p̃re](Ωϕ1(post
] ◦ α(I)))

v] Ωϕ(α(I))

If ϕ = ♦ϕ1, using the inequality I ∩ pre(Jϕ1K) ⊆ pre(post(I) ∩ Jϕ1K), we can do the
same calculus.

If ϕ = µ
ν X.(ϕ1 ∨ (ϕ2 ∧ ♦X) ∨ (ϕ3 ∧ �X)), let us define h[ = λX.(Jϕ1K ∪ Jϕ2K ∩

pre(X) ∪ Jϕ3K ∩ p̃re(X)). Then JϕK = lgfp λX.h[(X).
We will use Lemma 2.4.4 with

f [ = λX.(I ∪ post(X))
f ] = λX.(α(I) t] post](X))
b[ = λX.(post∗(I) ∩ (Jϕ1K ∪ Jϕ2K ∩ pre(X) ∪ Jϕ3K ∩ p̃re(X)))
b] = λX.(α(post∗(I) ∩ Jϕ1K)

t]α(post∗(I) ∩ Jϕ2K) u] pre](X)

t]α(post∗(I) ∩ Jϕ3K) u] p̃re](X))

It is clear that α ◦ b[ ◦ γ v] b] and α ◦ f [ ◦ γ v] f ] (given the standard properties
that α is additive and α ◦ γ is a lower closure operator [CC77]). Thus we have
α(L[

lgfp(f [, b[)) v] L]
lgfp(f ], b]).

First, we prove that I ∩ L[
lgfp(f [, b[) = I ∩ JϕK. We have:

L[
lgfp(f [, h[) ⊆ lgfpλX.((lfpλY.f [(Y )) ∩ h[(X)) ⊆ JϕK

Applying theorem 3.1.3 with h[, we obtain I ∩ JϕK = I ∩ L[
lgfp(f [, h[), so I ∩ JϕK =

I ∩ lgfpλX.((lfpλY.f [(Y )) ∩ h[(X)) = I ∩ lgfpλX.b[(X).
Then, applying theorem 3.1.3, with b[ this time, we obtain: I ∩ lgfp λX.b[(X) =

I ∩ L[
lgfp(f [, b[), proving the equality. So we proved:

α(I ∩ JϕK) = α(I ∩ L[
lgfp(f [, b[))

v] α(I) u] α(L[
lgfp(f [, b[))

v] α(I) u] L]
lgfp(f ], b])

Now we need to check that:

L]
lgfp(f ], b]) v] Ωϕ(α(I))

By the induction hypothesis, we see that Ωϕ(α(I)) = L]
lgfp(f ], b′

]) with b′
] satisfying

b] v] b′
], which completes the proof.
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�
Hence, we got an algorithm which uses combination for specifications with several

fixpoints. In this algorithm, compared with an abstract model-checking algorithm
which use only the backward abstract operators, new fixpoints appear for ∧ and µ

ν .
In both cases, we can take more imprecise approximations to reduce the complexity
of the analysis (for example, using a very rough approximation of Su]Ωϕ1u]Ωϕ2 and
then make only one iteration of the greatest fixpoint to approximate Ωϕ1∧ϕ2(S)).
Still, we have the trade-off between precision and speed.

3.2.2 Alternating transition system case

Now our program is modelled by an alternating transition system 〈P,Σ,∆〉. Π is a
set of atomic propositions, and π : Π → ℘ (Σ) the interpretation of the elements of
Π.

Abstract operators

To verify Aµ-formulas, we need to abstract the operators. For each p in Π, let π](p)
be an element of P ] such that π(p) ⊆ γ(π](p))2, and π](p) an element of P ] such
that Σ\π(p) ⊆ γ(π](p)).

For each subset I of P, we define the abstract controllable predecessor relation
CPre]

I ∈ P ] → P ] and the abstract uncontrollable predecessor relation UPre]
I ∈

P ] → P ]. These relations must satisfy, ∀X ⊆ Σ:

α ◦ CPreI(X) v] CPre]
I
◦ α(X)

α ◦ UPreI(X) v] UPre]
I
◦ α(X)

To make the backward-forward combination, we need an abstract successor op-
erator for forward analysis. This abstract successor relation post] must satisfy:

α ◦ post(X) v] post] ◦ α(X)

Again, we define post∗] = λX.lfp λY.(X t] post](Y )). One can easily check that:

α ◦ post∗(σ) v] post∗] ◦ α(σ)

We consider the closed Aµ formulas ϕ generated by the grammar:

ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈〈I〉〉 © ϕ1 | JIK© ϕ1

| µ

ν
x.(ϕ ∨

∨
I∈℘(P)\{∅}(ϕI ∧ 〈〈I〉〉 © x) ∨

∨
I′∈℘(P)\{∅}(ϕI′ ∧ JI ′K© x)).

As before, the last term of the grammar can be rewritten exchanging ∨ and ∧ without
modifying the expressivity of the logic.

2If α(π(p)) is computable, we can take π](p) = α(π(p))
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As for the non-game case, we can now define, if ϕ is a formula, Ωϕ ∈ P ] → P ]

as follows:

Ωp(S) = π](p) u] S

Ω¬p(S) = π](p) u] S

Ωϕ1∧ϕ2(S) = gfpλX(S u] Ωϕ1(X) u] Ωϕ2(X))
Ωϕ1∨ϕ2(S) = Ωϕ1(S) t] Ωϕ2(S)

Ω〈〈I〉〉©ϕ(S) = CPre]
I(Ωϕ(post](S)))

ΩJIK©ϕ(S) = UPre]
I(Ωϕ(post](S)))

Ωµ
ν x.(ϕ∨

∨
I(ϕI∧〈〈I〉〉©x)∨

∨
I′ (ϕI′∧JI′K©x))(S) =

L]
lgfp( λX.(S t] post](X)),

λY.( Ωϕ(post∗](S))
t]

⊔]
I(ΩϕI

(post∗](S)) u] CPre](Y ))
t]

⊔]
I′(ΩϕI′ (post

∗](S)) u] UPre](Y ))))

Theorem 3.2.2 For all formulas ϕ generated by the grammar above, and I ⊆ Q:

α(I ∩ JϕK) v] α(I) u] Ωϕ(α(I))

Proof. The proof is essentially the same of the non-game case.
All we need are the equalities I ∩UCPreI(Jϕ1K) ⊆ UCPreI(post(I ∩ Jϕ1K)) with

UCPre = UPre or CPre, and the equivalence:

Y ⊆ b[(X)⇐⇒ Y ⊆ b[(X ∩ post(Y ))

with b[ = λX.(A ∪
⋃

I(BI ∩ CPreI(X)) ∪
⋃

I′(CI′ ∩ UPreI′(X))). These properties
are quite easy to check. �

3.3 A simple example

We illustrate the combination with a very short and easy example. We will analyse
the small non-deterministic program shown in Fig. 3.3.

In this figure, x, n are integers, (random in [0,1]) returns a random integer in
[0, 1], and (input in [0,1]) returns a integer in [0, 1] entered by the user (these
commands behave in the same way in the transition relation). Control point (0) is
the program entry, we differentiate it from control point (1), which is the while loop
entry.

With initial condition x=1 at control point (0), we will try to prove that the user
cannot be sure to have x=0 at control point (9), that is, the initial condition satisfies
νx.((¬A) ∧ (B ∨ ♦x) ∧ (C ∨�x)) with A meaning that x=0 at control point (9), C
being the set of states at control point (2), and B being the set of states at other
control points.
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(0) { x = 1 }
(1)

while (n>0) do {
(2)

if (random in [0,1]=0) then
(3)

x = x * n;
(4)

else
(5)

x = x * (n-1);
(6)

fi
(7)

n = n - (input in [0,1]);
(8)

}
(9)

Figure 3.3: A short non-deterministic program.

As we use an upper approximation, we take the negation of the proposition, that
is (knowing that ¬B = C) : µx.(A∨(B∧♦X)∨(C∧�X)). So we must approximate
lfp λx.(JAK ∪ (JBK ∩ pre(x)) ∪ (JCK ∩ p̃re(x))).

We will use interval analysis [CC76], with the improvement of the results of local
decreasing iterations [Gra92] for assignments in the backward analysis.

We must abstract post(X), pre(X) and p̃re(X). Abstract operators may be
described as systems of semantics equations [Cou78, Cou81]. The program is almost
deterministic, and p̃re] is very close to pre]. The differences appear at control points
(2) and (7), but we only need to express it at control point (2), with the equation:

P2 = P3 u P5

(u being the intersection of abstract environments).
The table of Fig. 3.4 gives the results with a single forward analysis (F ](>])),

a single backward analysis (B](>])), the intersection of both analyses (F ](>]) u]

B](>])), and the first iteration of combination (B](F ](>]))).
The next iteration of the combination will lead to ∅ everywhere, which is of course

the abstract fixpoint L]. So L[ = ∅ (which is not equal to F [(>[) ∩ B[(>[)). As,
for this kind of temporal property, L[ ∩ I = I ∩ B[(>[), we obtained the expected
result.
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Lab. (var.) F ](>]) B](>]) F ](>]) u] B](>]) B](F ](>]))
(0) x: [1] [−∞,+∞] [1] ∅

n: [−∞,+∞] [−∞,+∞] [−∞,+∞] ∅
(1) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]
(2) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(3) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(4) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(5) x: [0,+∞] [−∞,+∞] [0,+∞] [0,+∞]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(6) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(7) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [1,+∞] [−∞,+∞] [1,+∞] [1,+∞]
(8) x: [0,+∞] [−∞,+∞] [0,+∞] [0]

n: [0,+∞] [−∞,+∞] [0,+∞] [0,+∞]
(9) x: [0,+∞] [0] [0] [0]

n: [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]

Figure 3.4: Result of the analysis of the program.
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3.4 Conclusion

With the results developed in this chapter, we can extend all the advantages of the
known combination to large classes of temporal properties. Existing analyses can be
modified to include this combination without much trouble. In particular, we can
use all state-based abstractions. Furthermore, the algorithms we presented can be
simplified to make a trade-off between precision and speed. The gain in precision is
significant, especially when we use widenings and narrowings, as it can change the
strategy of the widening.

To implement an analyzer which uses this approach, over-approximations of the
p̃re operator (or equivalent operators in the game logic) are needed. This is not diffi-
cult to find an efficient ones for non-relational abstractions. However, with this kind
of abstractions, the combination is not very powerful, because we can not take into
account the real independence of the random generators (cf. chapter 4). Relational
abstractions are very costly, and abstractions of “forced” backward operators (like
p̃re) are hard to develop.

The development of better forward analyses (reachability analysis is not precise
enough) is the subject of the following chapters.



Chapter 4

Tree semantics

In the previous chapter, we saw how to combine backward and forward state-based
analyses for complex properties. However, the forward analysis used is only a reach-
ability analysis, independent of the property we want to satisfy.

In this chapter, we illustrate with an example why this reachability analysis is
not sufficient when non-relational abstractions are used. To solve this problem, a se-
mantical approach is proposed. An extension of transition systems, called “extended
transition systems”, is defined in order to take the specification into account in the
semantics of the program. Then forward and backward semantics (based on sets of
trees) for these systems are defined, and the links between them are shown. We study
the combination of these semantics in this new framework, and we give examples of
constructions of extended transition systems from programs and specifications.

4.1 Limitation of the combination

We will start by the very simple program in an imperative language presented in
Fig. 4.1.

In this program, input describes a non-deterministic function controllable by

(1) Initial state: I : x = y = uninit.
x:= input in {0,1}

(2)
y:= random in {0,1}

(3)
x:= x+y

(4) Final states: F : x = 1

Figure 4.1: Simple program

34
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Label Forward Combination
(1) x: non-init. non-init.

y: non-init. non-init.
(2) x: [0, 1] [0, 1]

y: non-init. non-init.
(3) x: [0, 1] [0, 1]

y: [0, 1] [0, 1]
(4) x: [0, 2] [1]

y: [0, 1] [0, 1]

Figure 4.2: Analysis of the program of Fig. 4.1. Each line describes the result
for a program point and a variable (as the analysis is non-relational). The column
“Forward” gives the result for the reachability analysis; the column “Combination”
gives the combination of this result with a backward analysis. The result of the
combination is a fixpoint of both analysis.

the user, random a non-deterministic, uncontrollable function, without any notion
of probabilities.

We want to know if, from the initial state (program point (1), x and y unini-
tialised), the user can go to final states in F . We can describe this property as
R 6= ∅, with:

R = I ∩ lfp λX.(F ∪ (Σ3 ∩ p̃re(X)) ∪ (Σ2 ∩ pre(X)))

Σi being the set of states at program point (i). R is the set of the initial states from
which the user is able to reach a final state.

The combination of backward and forward analyses in the framework of abstract
interpretation for this kind of temporal property was described in the previous chap-
ter. If S is the result of the analysis, then I ∩S ⊇ R, so that I ∩S 6= ∅ is a necessary
condition for the property R 6= ∅ to be satisfied. In particular, I ∩ S = ∅ implies
that R = ∅, so that in that case the property is unsatisfiable.

We use the interval analysis [CC76], which is quite imprecise but very fast (precise
relational analyses like polyhedra [CH78] are too expensive for large programs).

The result is given in the table (we start by a forward analysis) described in
Fig. 4.2.

We get the combination after the first backward analysis, and the result is too
imprecise. We can get more informations in two distinct ways:

• We may give a relation between x and y at point (2), describing the informa-
tion, given by backward analysis, that we must have 0 ≤ x + y ≤ 1. This
approach would lead to relational domains. In this particular case, octagons
[Min01] would be sufficient, but more complex cases would need complex re-
lational analyses. Thus we try another approach.
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(1) Initial state: I : x = y = non-init.
x:= random in {0,1}

(2)
y:= input in {0,1}

(3)
x:= x+y

(4) Final states: F : x = 1

Figure 4.3: Modified program.

• It may be better if the information given by the forward analysis enables to give
∅ already at program point (3) with the backward analysis. As the command
y := random in {0,1} in the program does not use x, the intuition would be
not to modify x during the analysis of this command, but during the analysis
of x := y+x. To get this result, we must know that at point (3), y can take
any value in {0, 1} whatever the value of x, and regardless of the choices of
the user. On the contrary, the value of x depends on the choices of the user.
This distinction must appear in the forward semantics.

The forward analysis derives from the trace semantics, which is the most general
semantics we can have for a transition relation and a set of initial states. This
semantics, which gives a set of traces, does not include the context of the execution
of the program (here, the difference between input and random). Our idea is to
make several sets of traces, each set describing a “strategy” of the “user” (with the
same initial state). Each set of traces forms a tree, so we get a set of trees. With
the program used as an example, we get two trees (described in Fig. 4.4), and none
of those has all its leaves satisfying x = 1. Thus, there is no way to force x = 1 at
program point (4).

We can modify the program by swapping the random command and the input
command. The new program is given in Fig. 4.3. In this case, the choice of the“user”
takes place in two possible situations (x = 0 or x = 1 at program point (2)). As it
has two possibilities for this choice, we have four possible strategies. Therefore, we
get four trees (see Fig. 4.4 for detail), each tree expressing a strategy by determining
the choices the “user” would make in all situations. One of these trees has all its
leaves satisfying x = 1, which shows that there is a winning strategy for the “user”.

This example is a form of game. However, this approach is not specifically related
to games. The goal is to prove a temporal property, and each tree may be seen as a
potential “proof” of the property. The presence of a winning strategy is merely the
proof of the temporal property.

In the following sections, we develop this approach. We must begin with some
definitions and notations about trees (or, more accurately, about free trees).
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Figure 4.4: Traces generated by the programs of Fig. 4.1 and Fig. 4.3. Each state is
described by its program point (given by its column) and the value of x and y. The
traces which describe the same “strategy” for the user are put together in a tree for
both program. For the program of Fig. 4.3, each trace appears in two trees and we
get four trees.
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4.2 Trees

Transition systems semantics traditionally use sets of traces [Cou02]. In order to
combine the transition relation with the temporal property being checked, we will
use sets of free trees. The set of sets of free trees will be the semantical domain
for extended transition systems. The following section gives some definitions and
notations about this domain.

4.2.1 Free trees

We will note Σ the set of states, Σ∗ the set of finite sequences (or traces) of elements
of Σ, Σω the set of infinite sequences, and Σ∞ the union of Σ∗ and Σω. ε denotes
the empty sequence.

We note � the prefix order on Σ∞. The dot . is the concatenation operator
between two sequences. It is lifted to sets of sequences in the following way:

∀u ∈ Σ∗,∀V ⊆ Σ∞, u.V = {u.v | v ∈ V },
∀U ⊆ Σ∗,∀V ⊆ Σ∞, U.V = {u.V | u ∈ U}.

Hence, with the notations used, u.V ⊆ Σ∞ and U.V ⊆ ℘ (Σ∞).
In the following, σ, σ′ will always be states, and u, v will always be (possibly

empty) sequences. For example, u.σ will denote a (non-empty) finite sequence that
ends with σ.

Definition 4.2.1 (Free tree) A free tree labelled by Σ is a non-empty prefix-closed
subset of Σ∗ with only one “root” (sequence of length one)1.

All the trees used in this article will be free trees. As we will never use the empty
sequence ε of a free tree, we may omit it as well when describing a free tree.

t being a tree, we note t̄ the closure of t in Σ∞, root(t) the “root” of t, and
branch(t) the set of maximum elements of t̄. We will name the elements of branch(t)
the branches of t. A leaf of t is the last element of a finite branch of t. The set of
leaves of t will be noted leaf (t).

We denote by T the set of free trees labelled by Σ, and Θ = ℘ (T ).

Definition 4.2.2 (Subtree) Let t be a tree, and u.σ ∈ t, we define the subtree of
t rooted at u.σ as:

t[u.σ] = {σ.v | u.σ.v ∈ t}.

Then t[u.σ] is a tree rooted by σ. The set of subtrees of a tree t is denoted
subtrees(t).

Definition 4.2.3 (Well-founded tree) A free tree t labelled by Σ is said to be
well-founded iff branch(t) ⊆ Σ∗.

1This definition excludes the empty tree {ε}.
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Figure 4.5: An infinite well-founded tree. Σ = {i, σn | n ≥ 0}, and t =
{iσkσk−1 . . . σl | 0 ≤ l ≤ k}. The depth of the tree is unbounded, but it has
no infinite branch.

A well-founded tree does not have any infinitely increasing chains of sequences.
A tree with finite arity is well-founded if and only if it is finite. However, we

will deal mostly with infinite arity trees, and the distinction between finite and well-
founded must be made (an infinite but well-founded tree is presented in Fig. 4.5).
We will note TWF the set of well-founded trees labelled by Σ.

In order to define some sets of trees by conditions on their infinite branches, or
on their well-founded subtrees, we introduce some notations:

Definition 4.2.4 With θ ⊆ TWF , we note Tθ the set of trees t such that all well-
founded subtrees of t are in θ:

Tθ = {t ∈ T | subtrees(t) ∩ TWF ⊆ θ};

Definition 4.2.5 With S ⊆ Σω, we note T S the set of trees t such that each infinite
branch of t has a suffix in S:

T S = {t ∈ T | ∀u ∈ branch(t) ∩ Σω, ∃v ∈ S, u = u′.v}.
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4.2.2 Orders on sets of trees

⊆ is a partial order on T . However, this order is too imprecise: we will define a
“prefix” order �T on trees (as in [MT01]), such that t �T t′ if t′ extends t only on
leaves of t:

t �T t′ ⇐⇒ t ⊆ t′ ∧ (∀u′ ∈ branch(t′),∃u ∈ branch(t), u � u′).

We denote by v the preorder on Θ defined as:

θ v θ′ ⇐⇒ (∀ t′ ∈ θ′, ∃ t ∈ θ, t �T t′)

Note that ∅ is the only supremum in (Θ,v) (and θ ⊆ θ′ ⇒ θ w θ′).
As v is a preorder, it is not usable to define semantics as fixpoints of iterative

sequences. Rather than quotienting Θ, we will restrict ourselves to a subset of Θ in
which v will be a partial order. The subset used will be the sets of non-comparable
trees where all comparable branches of each tree are equal: we can see the branches
of the trees as traces, and all traces must be equally complete in all the trees where
they appear. With this restriction (stronger than the quotienting), we can define a
least upper bound for increasing sequences of sets.

Proposition 4.2.6 We note:

ΘNC = {θ ∈ Θ | ∀(t, t′) ∈ θ2,∀u ∈ branch(t), ∀u′ ∈ branch(t′),
u � u′ ⇒ u = u′}.

And, (θi)i∈N being an increasing chain of ΘNC , we define t(θi) as:

t ∈ t(θi) ⇐⇒ ∃(t0, t1, . . .) ∈ θ0 × θ1 × . . . ,

t0 �T t1 �T . . . ∧ t = ∪(ti).

Then ΘNC〈v,⊥,t〉 is a complete partial order (cpo) with ⊥ = {{σ} | σ ∈ Σ}.

Proof. First, let us check that v is a partial order, i.e. it is anti-symmetric.
Let θ, θ′ be in ΘNC such that θ v θ′ and θ′ v θ. For all t′ in θ′, there exists t

in θ such that t �T t′. Then there exists t′′ in θ′ such that t′′ �T t �T t′. Thus
t′′ �T t′, which means that each branch of t′ has a prefix which is a branch of t′′.
But t′′ and t′ are both in θ′, so all their comparable branches are equal. Hence, all
branch of t′ is a branch of t′′, and since t′′ ⊆ t′, t′′ = t′ = t. Thus, θ′ ⊆ θ and, by
symmetry, θ = θ′. So v is anti-symmetric, it is a partial order.

Now, we must prove that t is an inductive join.
Let (θi)i∈N be an increasing chain of ΘNC . It is obvious that t(θi) w θj for all j.
Let us prove that t(θi) is in ΘNC : let t, t′ be trees in t(θi), and u ∈ branch(t),

u′ ∈ branch(t′) such that u � u′. Since t ∈ t(θi), it exists an increasing chain
(t0, t1, . . .) ∈ θ0 × θ1 × . . . such that t0 �T t1 �T . . . and t = ∪(ti). Similarly, it
exists an increasing chain (t′0, t

′
1, . . .) ∈ θ0 × θ1 × . . . such that t′0 �T t′1 �T . . . and
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t′ = ∪(t′i). Then, for all i, we can find ui ∈ branch(ti) and u′i ∈ branch(t′i) such that
ui � u and u′i � u′. Hence ui and u′i are comparable, so they are equal. Furthermore,
u (resp. u′) is the limit of (ui). So u = u′, which proves that t(θi) ∈ ΘNC .

Then, let θ be an element of ΘNC such that ∀j ∈ N, θj v θ.
Let t be a tree of θ. For all j ∈ N, there exists tj ∈ θj such that tj �T t. We will

prove that (tj) form an increasing chain of trees for �T .
Let i and j be two integers such that i < j. Let tij be a tree of θi such that

tij �T tj (it exists because θi v θj). Then tij �T t, and each branch u of t has a
prefix ui

j which is a branch of tij . But u has also a prefix uj which is a branch of
ti. Since ti and tij are both in θi and ui

j and uj are comparable as prefix of the
same sequence, ui

j = uj . As ti and tij are subset of t, all their branches are prefix of
branches of t. Hence ti = tij .

We conclude that (ti)i∈N forms a �T -increasing chain of trees. Thus, t′ = ∪(ti)
is in t(θi). It is clear that t′ �T t. Thus t(θi) v θ, which proves that t(θi) is the
least upper bound of (θi). �

We will therefore be able to define semantics as limit of increasing chains for v
in ΘNC . In the next section, we define the extension of the transition systems we
want to study, and forward and backward semantics for this extension.

4.3 Extended transition system

4.3.1 Definitions

As a transition relation associates a set of successors to each state, an extended
transition relation will associate several sets of successors to each state.

Definition 4.3.1 (Extended transition relation and system) Σ being a set of
states, an extended transition relation τ on Σ is a subset of Σ×℘ (Σ), or an element
of Σ → ℘ (℘ (Σ)). An extended transition system is a pair 〈Σ, τ〉, where τ is an
extended transition relation on Σ.

In general, we will use the functional form for extended transition relations. We
can interpret an extended transition system in two ways: first as a game with two
players (the user and the machine), such that from a state σ, the user choose the set
of potential next states in τ(σ), and the machine arbitrarily takes one state in the
chosen set. The second approach is related to logic: each set in τ(σ) is an alternative
way (expressed as a set of requirements) to prove σ. In this approach, τ(σ) = {∅}
means that σ is an “axiom”, whereas τ(σ) = ∅ means that σ is “false”.

Each extended transition relation can be described as a set of “elementary” trees
of depth 1 or 2, in the following way:

Definition 4.3.2 (Elementary trees) τ being an extended transition relation, we
denote by elem(τ) the set of trees:

elem(τ) = {{σ, σ.σ′ | σ′ ∈ S} | σ ∈ Σ, S ∈ τ(σ)}
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Figure 4.6: The elementary trees of the extended transition system 〈Σ, τ〉 with
Σ = {1, 2, 3, 4} and τ(1) = {{2, 3}, {2, 4}}, τ(2) = {{3}, {4}}, τ(3) = {∅}, τ(4) = ∅.

elem(τ) gives a graphical description of the extended transition relation τ (see
Fig. 4.6 for example).

4.3.2 Forward semantics

From a set of trees, we make a forward step by appending elementary trees to the
leaves of the trees:

Definition 4.3.3 (Forward operator) The forward operator F of an extended
transition system 〈Σ, τ〉 is:

F : Θ → Θ
θ 7→ { t′ | ∃t ∈ θ,

∃su.σ ∈ τ(σ) for all u.σ ∈ branch(t) s.t.
t′ = t ∪ {u.σ.σ′ | u.σ ∈ branch(t), σ′ ∈ su.σ}}.

F (θ) is created by appending (coherently) an elementary tree to each finite branch
of each tree of θ. We can see that F can also “remove” a tree when a leaf σ satisfies
τ(σ) = ∅. F is, of course, a morphism for the union ∪. A simple forward semantics
of (Σ, τ) is therefore lfpλX.(I ∪ F (X)), where I = {{i} | i ∈ I} is the set of initial
states described as trees:

Definition 4.3.4 (Partial forward semantics) The partial forward semantics Fp(I)
of an extended transition system 〈Σ, τ〉 with initial states I ⊆ Σ is defined as:

Fp(I) = lfp⊆∅ λX.(I ∪ F (X))

where I = {{i} | i ∈ I}.

In the trace semantics point of view, this semantics gives the partial traces of the
transition system starting from the initial states.
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A more expressive semantics would give only the maximal trees coherent with
the transition system. We can achieve this goal by using the order v on the set ΘNC

we defined before. To ensure the stability of ΘNC by F , we need a condition on τ :

Proposition 4.3.5 If an extended transition system 〈Σ, τ〉 satisfies:

∀σ ∈ Σ : ∅ ∈ τ(σ) =⇒ τ(σ) = {∅}, (4.1)

then F defines a v-monotonic and extensive function from ΘNC to ΘNC .

Proof. We need to prove that for all θ ∈ ΘNC , F (θ) is in ΘNC .
Let θ be an element of ΘNC , t, t′ be trees of F (θ), and u.σ (resp. u′.σ′) be

a branch of t (resp. t′). We suppose that u.σ � u′.σ′. We want to prove that
u.σ = u′.σ′.

Let t0 (resp. t′0) be an element of θ such that t ∈ F ({t0}) (resp. t′ ∈ F ({t′0})).
Then, either u.σ (resp. u′.σ′) is a branch of t0 (resp. t′0), or u (resp. u′) is a branch
of t0 (resp. t′0). Let us examine the different cases:

• u.σ is a branch of t0 and u′.σ′ is a branch of t′0. Since u.σ and u′.σ′ are
comparable, and t0, t′0 are in θ, u.σ = u′.σ′.

• u.σ is a branch of t0 and u′ is a branch of t′0. Then u.σ = u′. Since u.σ is a
branch of t0 and of t, by definition of F , ∅ ∈ τ(σ). Since u.σ is a branch of t′0
and u.σ.σ′ a branch of t′, τ(σ) 6= {∅}, and we have a contradiction.

• u is a branch of t0 and u′.σ′ is a branch of t′0. Then u = u′.σ′, which is
impossible since we supposed that u.σ � u′.σ′.

• u is a branch of t0 and u′ is a branch of t′0. Then u = u′. The only possibility
to get u.σ and u′.σ′ comparable is then σ = σ′. Then u.σ = u′.σ′.

Thus, F defines a function from ΘNC to ΘNC . Proving the monotonicity and
extensivity of F is easy. �

This condition says that a potential final state is always final. Note that a tree
which has a leaf σ with τ(σ) = ∅ will disappear in the next iteration of F . This is
compatible with the order v, which has ∅ as a supremum.

Under these conditions, we can define a maximal forward semantics on an ex-
tended transition system (we recall that lfpva F is the v-lowest fixpoint of F greater
than or equal to a):

Definition 4.3.6 (Maximal forward semantics) The maximal forward
semantics Fm(I) of an extended transition system 〈Σ, τ〉 with initial states I ⊆ Σ
is defined as:

Fm(I) = lfpvI F

with I = {{i} | i ∈ I}.

We can note that F is t-continuous, so Fm(I) is reached with at most ω itera-
tions. An example of the maximal forward semantics is given in Fig. 4.7.
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Figure 4.7: The iterations and the maximal forward semantics of the extended tran-
sition system given in Fig. 4.6, with I = {1}.

Coherent trees

Before examining the backward semantics, let us see what is exactly a tree in Fm(I).
We define the notion of coherent trees with respect to an extended transition system.

Definition 4.3.7 (Coherent tree) A tree t is coherent with the extended transi-
tion system 〈Σ, τ〉 if:

∀u.σ ∈ t, ∃s ∈ τ(σ) such that u.σ.σ′ ∈ t⇔ σ′ ∈ s.

We note Cτ the set of the trees that are coherent with respect to 〈Σ, τ〉. A tree
is coherent with φ when for each node labelled by σ, the set of direct successors of
this node is in τ(σ). Each leaf σ of this tree satisfies {∅} ∈ τ(σ).

The link between Cτ and Fm(I) is clear:

Lemma 4.3.8 Fm(I) is the set of trees coherent with 〈Σ, τ〉 the roots of which are
in I.

Proof. We denote by CI
τ the set of trees coherent with 〈Σ, τ〉 which roots are in I.

For all t in CI
τ , we note: tn = {u ∈ t | length(t) ≤ n} for all n ≥ 1.

If we denote by Fn(I) the successive iterations of F starting with I = {{i} | i ∈
I}, it is easy to prove by induction that tn ∈ Fn−1(I) for all n. Then t ∈ Fm(I),
and CI

τ ⊆ Fm(I).
On the other hand, let t be a tree of Fm(I), and u.σ ∈ t. u.σ is a branch of a tree

t0 which appears in the iterations of Fn(I) as a “prefix” of t. Let t1 the element of
F ({t0}) which is a “prefix” of t too. Then ∃s ∈ τ(σ) such that u.σ.σ′ ∈ t1 ⇔ σ′ ∈ s.
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As the successive iterations from t1 do not make the tree “grow” from u.σ, we are
sure that t is coherent in u.σ.

Thus, t ∈ CI , and CI
τ = Fm(I). �

4.3.3 Backward semantics

There are two possible approaches to define the backward semantics: a least fixpoint,
which only gives well-founded trees, or a greatest fixpoint, which gives all maximal
trees. Both will be described here. The possibility of using both with a bi-inductive
definition, as we can do with traces, will be discussed afterwards.

Definition 4.3.9 (Backward operator) The backward operator B of an extended
transition system 〈Σ, τ〉 is:

B : Θ → Θ
θ 7→ {t ∈ θ | σ = root(t)

∃S ∈ τ(σ),∃ts ∈ θ for all s ∈ S with root(ts) = s,

t = σ.(∪s∈S ts)}.

B(θ) are the trees created by appending the trees of θ to an elementary tree of τ .
B is monotonic and a complete ∩-morphism (hence it is co-continuous). However,
B is not continuous.

To define the maximal trace semantics (as in [CC92c]), we start from all final
states (states which have no successor). Here we will start with states σ such that
τ(σ) = {∅} (on the contrary, states σ such that τ(σ) = ∅ intuitively correspond to
error states). Thus we note:

fτ = {σ ∈ Σ | τ(σ) = {∅}}

With traces, we define the maximal finite trace semantics (with a least fixpoint),
and a maximal trace semantics (finite or infinite) with a greatest fixpoint. Here we
define the maximal well-founded backward semantics, and the maximal backward
semantics.

Definition 4.3.10 (Maximal well-founded backward semantics) The
maximal well-founded backward semantics is defined as:

Bm
WF = lfp⊆ λX.(fτ ∪B(X)).

Note that, as B is not continuous, the least fixpoint may not be reached after ω
iterations. This may occur in the case of unbounded non-determinism.

The correspondence between Bm
WF and coherent trees is described by the lemma:

Lemma 4.3.11 Bm
WF = Cτ ∩ TWF .
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Proof. We only give a sketch of the proof.
It is easy to check that fτ ⊆ Cτ , and that if θ ⊆ Cτ , then B(θ) ⊆ Cτ . Thus

Bm
WF ⊆ Cτ .

Now, let t be a well-founded and coherent tree. We associate to each u in t an
ordinal ou such that:

ou =
{

1 if u is a leaf
(supu.σ∈t ou.σ) + 1 otherwise

The definition of ou is possible because t is well-founded.
For all ordinals o, we denote to = {t[u] | ou ≤ o}. Then we can prove by transfinite

induction that for all ordinal o, the oth iteration of λX.(fτ ∪B(X)) starting from ∅
contains to. Thus, if σ is the root of t, t is in the oσ

th iteration of λX.(fτ ∪B(X)).
Hence t ∈ Bm

WF . �
The well-founded backward semantics can be defined as a greatest fixpoint, start-

ing only from the set of all well-founded trees. In this case, the fixpoint is reached
in ω iterations (at most).

Proposition 4.3.12

Bm
WF = gfp⊆TW F

λX.(fτ ∪B(X)).

Proof. We only give a sketch of the proof.
We want to prove that gfp⊆TW F

λX.(fτ ∪ B(X)) = Cτ ∩ TWF . Let (θn) be the
successive decreasing iterations of λX.(fτ ∪B(X)) starting from TWF . By induction,
we can prove that for all n, the trees of θn are “coherent until the depth n”. Hence
gfp⊆TW F

λX.(fτ ∪B(X)) ⊆ Cτ ∩ TWF .
Furthermore, Cτ ∩ TWF is a fixpoint of λX.(fτ ∪B(X)). Thus gfp⊆TW F

λX.(fτ ∪
B(X)) = Cτ ∩ TWF = Bm

WF . �

Definition 4.3.13 (Maximal backward semantics) The maximal backward se-
mantics is defined as:

Bm = gfp⊆ λX.(fτ ∪B(X)).

The semantics gives exactly the set of trees coherent with 〈Σ, τ〉:

Lemma 4.3.14 Bm = Cτ .

Proof. Similar as for proposition 4.3.12. �
Using the lemmas linking the semantics and Cτ , we can display the relationship

between backward and forward semantics.

Theorem 4.3.15 We have, for all I ⊆ Σ, with T (I) being the set of trees rooted by
an element of I:

Bm
WF ∩ T (I) = Fm(I) ∩ TWF ;

Bm ∩ T (I) = Fm(I).
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Proof. This is the direct consequence of lemmas 4.3.8, 4.3.11 and 4.3.14. �
In [Cou02, CC92c], Cousot and Cousot defines the maximal trace semantics of

a transition system as a mix of a greatest and a least fixpoint (the greatest fixpoint
being used for infinite traces, and the least fixpoint being used for finite traces). This
combination is useful for further abstractions such as potential termination [Cou02].
However, in the case of sets of trees, infinite and finite traces are mixed, and it seems
quite hard to define the maximal backward semantics as a combination of a greatest
and a least fixpoint. However, we can compute first only well-founded trees with a
least fixpoint, and then use a greatest fixpoint on a restricted set of infinite trees
defined by the well-founded set previously computed:

Proposition 4.3.16 We have:

Bm = gfp⊆TBm
W F

λX.(fτ ∪B(X)).

(we recall that TBm
W F

is the set of trees which have all well-founded subtrees in Bm
WF ).

Proof. It is sufficient to notice that TBm
W F
⊇ Bm. �

Thus, to compute the maximal backward semantics, we first generate the well-
founded backward semantics as a least fixpoint, then create the set of all trees with
well-founded subtrees in the generated set, and then use a greatest fixpoint.

4.4 Making extended transition system

To use extended transition systems, we have to define them as semantics of real
programs. Our idea is to create an extended transition system from a program and
a temporal property we want to prove.

In the non-game approach, a program is represented by its small-step semantics
expressed as a classical transition system 〈Σ0, τ0〉. The transformation depends on
the temporal property. In this section, we present some examples.

4.4.1 Distinction between two kind of non-determinisms

The temporal properties expressed here are quite easy, with only one fixpoint. Using
the µ-calculus formalism, the temporal property we intend to use is defined as:

Φ =
µ

ν
X.(A ∨ (B ∧ ♦X) ∨ (C ∧�X)).

This kind of formula includes, of course, all the basic CTL operators (excepted
AX and EX). But we do not intend to combine them (with several fixpoints).
However, the formula expresses also some form of game properties, by introducing
“fated” and “free” non-determinisms, depending of the current state.
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States satisfying A are“final”states. States satisfying B are“free”non-deterministic
states: we can choose the successor in order to get A (in other words, if one suc-
cessor satisfies Φ, then the state satisfies Φ). States satisfying C are “fated” non-
deterministic states: we cannot choose the successor. States which satisfy neither
A, nor B nor C are errors states. For the sake of simplicity, we identify A with the
set of states satisfying A.

The extended transition system 〈Σ, τ〉 is then defined as follows, with Σ = Σ0:

τ(σ) = ∅ if σ 6∈ A ∪B ∪ C
τ(σ) = {∅} if σ ∈ A
τ(σ) = {{σ′} | σ′ ∈ τ0(σ)} if σ ∈ B
τ(σ) = {τ0(σ)} if σ ∈ C

τ satisfies (4.1). Furthermore, the roots of the backward semantics with a least
fixpoint (resp. with a greatest fixpoint) of 〈Σ, τ〉 are exactly the set of states satis-
fying Φ with µ

ν = µ (resp. with µ
ν = ν).

Theorem 4.4.1 An initial state satisfies Φ (with µ
ν = µ) if and only it is the root

of a well-founded tree in Fm(I).
An initial state satisfies Φ (with µ

ν = ν) if and only it is the root of a tree in
Fm(I).

Proof. It is easy to prove that the computation of the maximal backward semantics
(resp. maximal well-founded backward semantics) of the transition system is similar
to the backward algorithm computing the formula: if θn is the nth iteration of the
backward semantics, then root(θn) are the states computed at the nth iteration of the
backward algorithm. Using the results of theorem 4.3.15, we prove the proposition.
�

4.4.2 Game properties with only one fixpoint

An extended transition system expresses a form of game, where the (two) players
do not play simultaneously (first the set of possible successors is chosen, then a
successor is picked in this set). To prove that this restriction is not problematic, we
show that it is possible to use extended transition systems to check properties on
alternating transition systems.

Let 〈P,Σ,∆〉 be an alternating transition system. We want to check a specifica-
tion described as a Aµ-calculus formula of the kind:

Φ =
µ

ν
X.(A ∨

∨
I∈℘(P)\{∅}(BI ∧ 〈〈I〉〉 © x) ∨

∨
I′∈℘(P)\{∅}(CI′ ∧ JI ′K© x)).

For the sake of simplicity, we suppose that A and all the BI and CI′ are disjoint.
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The extended transition system is then (Σ, τ), with τ defined as follows:

τ(σ) = ∅ if σ 6∈ A ∪
⋃

BI ∪
⋃

CI′

τ(σ) = {∅} if σ ∈ A
τ(σ) = {

⋃
∀i/∈I,τi∈δi(σ)

⋂
i∈Pτi | ∀i ∈ I, τi ∈ δi(σ)} if σ ∈ BI

τ(σ) =
⊗
∀i∈I,τi∈δi(σ){

⋂
i∈Pτi | ∀i /∈ I, τi ∈ δi(σ)} if σ ∈ CI

where each set of
⊗

x∈X Ex is generated by picking exactly one element of each set
of Ex for all x and putting these elements together.

τ satisfies the equation (4.1) (if the alternating transition system is nonblocking),
and enables to check Φ:

Theorem 4.4.2 Let I be the set of initial states, and σ ∈ I. σ satisfies Φ (with
µ
ν = µ) if and only it is the root of a well-founded tree in Fm(I). Furthermore, σ
satisfies Φ (with µ

ν = ν) if and only it is the root of a tree in Fm(I).

Proof. Again, the backward maximal semantics follows the backward computation
of the set of states satisfying Φ. �

4.4.3 CTL

A CTL formula may have several nested fixpoints [CGP99]. We simulate the actions
of these fixpoints with only one fixpoint by extending the set of states.

Φ being a formula, we denote sub(Φ) the set of all sub-formulas in Φ. Then we
define Σ as:

Σ = Σ0 × sub(Φ).

The extended transition relation τ is defined in Fig. 4.8. Let Ψ be the set
of sub-formulas of Φ of the form AG, EG, AR, ER. For all φ in Ψ, we define
Tφ = (Σ0 × {φ})ω, and TΨ =

⋃
φ∈Ψ Tφ. TΨ are the infinite sequences where the

temporal formula is constant and of the form G or R. The only infinite branches
allowed for a tree “proving” Φ must have a suffix in TΨ.

Then an initial state i satisfies Φ if and only if (i,Φ) is the root of a tree in
Fm(I ×Φ)∩ T TΨ . This property can be proved by induction on the structure of Φ.

4.5 Combination

One of the basic goals of using extended transition systems is to make automatic
abstractions, and to use the combination between forward and backward analyses.
The principle of the combination is to use the result of the previous analysis at each
iteration of the next analysis, to get more precise values (which are still sound). Even
if the operation is done on the abstract domain, there are underlying operations on
the concrete domain. In this section, we examine the possible combinations one can
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τ(σ, p) = {∅} if σ satisfy p

τ(σ, p) = ∅ otherwise
τ(σ, φ1 ∨ φ2) = {{(σ, φ1)}, {(σ, φ2)}}
τ(σ, φ1 ∧ φ2) = {{(σ, φ1), (σ, φ2)}}

τ(σ,AXφ) = {{(σ′, φ) | σ′ ∈ τ0(σ)}}
τ(σ,EXφ) = {{(σ′, φ)} | σ′ ∈ τ0(σ)}
τ(σ,AFφ) = {{(σ, φ)}, {(σ′,AFφ) | σ′ ∈ τ0(σ)}}
τ(σ,EFφ) = {{(σ, φ)}, {(σ′,EFφ)} | σ′ ∈ τ0(σ)}
τ(σ,AGφ) = {{(σ, φ), (σ′,AGφ) | σ′ ∈ τ0(σ)}}
τ(σ,EGφ) = {{(σ, φ), (σ′,EGφ)} | σ′ ∈ τ0(σ)}

τ(σ,A(φ1Uφ2)) = {{(σ, φ2)}, {(σ, φ1), (σ′,A(φ1Uφ2)) | σ′ ∈ τ0(σ)}}
τ(σ,E(φ1Uφ2)) = {{(σ, φ2)}, {(σ, φ1), (σ′,E(φ1Uφ2))} | σ′ ∈ τ0(σ)}
τ(σ,A(φ1Rφ2)) = {{(σ, φ1), (σ, φ2)}, {(σ, φ2), (σ′,A(φ1Rφ2)) | σ′ ∈ τ0(σ)}}
τ(σ,E(φ1Rφ2)) = {{(σ, φ1), (σ, φ2)}, {(σ, φ2), (σ′,E(φ1Rφ2))} | σ′ ∈ τ0(σ)}

Figure 4.8: Definition of τ for CTL.

see in the concrete domain. As the approximations are over-approximations2, the
operations must be made so that we still get a superset of Fm(I) (or Fm(I)∩TWF )
at the end of the computation, in order to keep sound results.

4.5.1 Using backward results in forward analysis

For each iteration of F , we can remove the trees which are not a subset (or “prefix”)
of a tree obtained in the backward analysis:

Theorem 4.5.1 With ⇓: Θ×Θ −→ Θ defined as:

θ1 ⇓ θ2 = {t1 ∈ θ1 | ∃t2 ∈ θ2, t1 ⊆ t2}

we have the following results:

Fm(I) = lfpvI⇓Bm λX.(F (X) ⇓ Bm)

Fm(I) ∩ TWF = lfpvI⇓Bm
W F

λX.(F (X) ⇓ Bm
WF )

2The combination of analyses uses over-approximations to check intersection of properties (e.g.
states which are initial states and satisfy the temporal property). To get an equivalent of a lower
approximation, we can use the negation of the temporal property.
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Proof. Let (θi) (resp. (θ′i)) be the successive iterations of F starting from I (resp.
of λX.(F (X) ⇓ Bm) starting from I ⇓ Bm). We prove by transfinite induction that
for all i, θi ⇓ Bm = θ′i. The right inclusion (θi ⇓ Bm ⊇ θ′i) is a consequence of the
reductivity of λθ.θ ⇓ Fm(I). To prove the left inclusion, we distinguish between
ordinals:

If this property is satisfied for an ordinal i, let t be a tree of θi+1 ⇓ Bm. Then it
exists t′ in θi such that t ∈ F ({t′}), and we can find tf in Bm such that t ⊆ tf .
Thus, t′ ⊆ tf , and t′ ∈ θi ⇓ Bm so t′ ∈ θ′i. Hence t ∈ F (θ′i) ⇓ Bm.
If ω is a limit ordinal, and the property is satisfied for all i < ω, let t ∈ θω ⇓ Bm.
Then for all i < ω, it exists ti ∈ θi such that ti ⊆ t and ∪(ti) = t, and it exists
t′ ∈ Bm such that t′ ⊇ t. Then for all i, ti ∈ θi ⇓ Bm, so ti ∈ θ′i. Hence t ∈ θ′ω.

Thus Fm(I) = Fm(I) ⇓ Bm = lfpvI⇓Bm λX.(F (X) ⇓ Bm). The proof is the same
for Fm(I) ∩ TWF . �

Remark 4.5.2 λθ.(θ ⇓ Bm) is, in fact, a lower closure operator on ΘNC . The proof
we shown is the proof of the property of lfp-completeness of this operator with respect
to λθ.I tF (θ) (even if this operator is not complete). We will see in chapter 5 that
this approach is more general.

4.5.2 Using forward results in backward analysis

Each iteration of the backward analysis gives a set of trees. One possible improve-
ment is to intersect this set with a set of potential trees given by the forward analysis.
However, it would be much better to impose some kind of constraints on the set of
trees given by the iteration. The idea is to remove trees which will not change the
final results because they do not appear together with other trees. Formally, from
Fm(I), we would like to get H ⊆ Θ such that B′ defined as:

B′(θ) = {t ∈ B(θ) | ∃H ∈ H, t ∈ H ∧H ⊆ B(θ)}

may replace B as the backward operator.

Remark 4.5.3 Here again, ρH = λθ.{t ∈ θ | ∃H ∈ H, t ∈ H ∧H ⊆ θ} is a lower
closure, and B′ = ρH ◦ B. The problem is therefore to find a good lower closure
operator to apply to B.

In order to get H, we need to distinguish the different cases of backward seman-
tics:

With a greatest fixpoint

To get t in Bm, all subtrees of t must be in Bm, at each stage of the iteration.
Therefore, we can take for H the set of all subtrees of each tree in Fm(I):

Theorem 4.5.4 With H = {subtrees(t) | t ∈ Fm(I)}, we have:

Bm = gfp⊆ λX.(fτ ∪B′(X)).
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With a least fixpoint

Let B be an iteration of λX.(fτ ∪B(X)). Then t will be in Bm
WF if we can find a set

θ of subtrees of t in B which “covers” all the branches of t:

∀u ∈ t,∃v ∈ t, u � v ∨ v � u, such that t[v] ∈ θ (4.2)

To see what may be θ intuitively, we just remove an “upper part” of t without
removing a complete branch. We get a set of trees which satisfy the property (4.2)
(see Fig. 4.9 for an example). This result is expressed in the following theorem:

Theorem 4.5.5 We define a “slice” θ of a tree t as a set of subtrees of t which
satisfies (4.2). We denote Slices(t) the set of all slices of a tree t. Then, with

H =
⋃

t∈(Fm(I)∩TW F )

Slices(t)

we have:
Bm

WF = lfp⊆ λX.(fτ ∪B′(X))

In practice, this theorem is not usable, H is too large, and its approximations
would be too imprecise.

4.6 Discussion

We have defined new forward and backward concrete semantics for checking temporal
properties on programs: from the transition system and the temporal property, we
create an extended transition system which combines informations from both, and
we give the semantics of this extended transition system. The forward semantics
uses a complex order on sets of trees, and complex operations. Deriving analyses
from these semantics may be hard. However, our goal is not to prove properties
directly from the forward analyses, but to collect more information which will help
the backward analyses.

Much work about approximations of sets of trees for abstract interpretation was
done by Mauborgne [Mau99, Mau00]. Even if this work deals with trees with finite
arity, it is expected to be very helpful to abstract structures on sets of trees.
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t3

t

t1

t2

Figure 4.9: An example of a set of trees ({t1, t2, t3}) which satisfies (4.2) with respect
to the tree t.



Chapter 5

Property-driven analysis

As we saw in the previous chapter, the operation of backward-forward combinations
in tree semantics involves lower closure operators: proving the soundness of the
combination was comparable to the proof of fixpoint-completeness of a lower closure
operator with respect to the iteration function.

From this observation, we can develop the idea of property-driven analysis: as-
suming that the verification of the specification is done through the application of
a lower closure operator on a fixpoint semantics of the program, we can construct
from it another lower closure operator which can restrict the iterations to significant
parts (for the checking of the property).

This principle does not look too different from the general principle of abstract
interpretation: the goal of the abstraction itself is to restrict the set of properties
expressible in order to get a computable approximation which can prove or refute
the specification. However, the main point is the possibility to use simultaneously
abstraction and property-driven analysis, and even to abstract the construction of
the“driver”, making it computable while keeping the soundness of the whole analysis.
Afterwards, the last stage of the combination is to prove the possibility of reusing
the results of each abstract analysis (the initial one, and the abstract construction
of “guide”) to refine the results of the other.

One important advantage of this approach is that we do not need to develop
complex backward and forward semantics before proving the soundness of the com-
bination. Starting from only one semantics and a specification, we derive the other
“semantics” and we are sure that the combination between both will be sound. Of
course, we can use this approach on tree semantics to keep the expressiveness of sets
of trees.

54
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5.1 Concrete description

The first step of the design of a static analysis is the description of the concrete
semantics of a program. The semantics is often described as a fixpoint S = lgfpφ
on a cpo D. We suppose that D is a complete lattice, and, for simplicity, that
D = ℘ (Σ), e.g. Σ is a set of states, traces, trees, etc.

Our main hypothesis is that the property we want to prove is expressed by the
inclusion of S in a subset P of Σ. This hypothesis may seem too strong, but we can
modify the concrete semantics in order to satisfy it.

Example 5.1.1 We can describe the program as a transition system 〈Σ, τ〉, Σ being
the set of states. I are the initial states of the program.

1. To express that the program will never reach error states E, we can write either:

(lfpλX.I ∪ post(X)) ⊆ Σ\E,

or
(lfpλX.E ∪ pre(X)) ⊆ Σ\I.

2. To express that for all initial states, the program may not go wrong (with
the CTL formalism, ∀i ∈ I, i |= EG(¬error)), we can only use a backward
approach:

(lfpλX.E ∪ p̃re(X)) ⊆ Σ\I where E are the error states.

3. For complex CTL properties, with more than one fixpoint, we can use extended
transition systems. The inclusion of the semantics (either forward or back-
ward) with trees rooted by non-initial states and/or with conditions on their
infinite branches is in the studied framework.

Proving S ⊆ P is equivalent to prove S ∩ (Σ\P) = ∅. This kind of property may
be checked in the framework of abstract interpretation: an over-approximation of
S ∩ Q (with Q = Σ\P) is computed and compared with ∅.

The main idea of the approach is to consider ρ0 = λX.X ∩ Q as a lower closure
operator on ℘ (Σ), and to exploit the results on the construction of fixpoint complete
lower closure operators. With the construction of complete closures described in
section 2.4.2, we can derive a lower closure ρ greater than ρ0 which is lgfp-complete
for φ. Then:

ρ0 (lgfp ρ ◦ φ) = ρ0 ◦ ρ (lgfpφ) = S ∩ Q

The figure (5.1) is an illustration of this result.
Thus, instead of computing an over-approximation of lgfp φ, we can compute an

over-approximation of lgfp ρ ◦ φ.
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ρ

ρ ◦ φ

ρ0 = λX.X ∩Q

fixpoints of ρ

fixpoints of ρ0

φ

ρ

S

S ′

℘ (Σ)

Σ

∅

ρ ◦ φ

Q

S ∩Q
= S ′ ∩Q

ρ

ρ0

φ

S = lfpφ
S ′ = lfp ρ ◦ φ

= ρ(lfpφ)

Figure 5.1: Description of the combination, without abstractions. We want to com-
pute Q ∩ lfp φ = ρ0(lfpφ). Let ρ w ρ0 such that ρ is lfp-complete for φ. Then
Q∩ lfp ρ ◦ φ = Q∩ lfp φ.
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1

2 4

53

Figure 5.2: Transition system described in example 5.1.2. {1}, {2, 3} and {4, 5}
generates Rφ(ρ0)

Example 5.1.2 With φ = λX.F ∪ p̃re(X), we can use the equation (2.3) since φ is
co-continuous. With a ⊆ Σ, we have:

min(φ−1(↑ a)) = {post(a\F )}

For example, we can choose Σ = {1, 2, 3, 4, 5}, Q = {1}, F = {5} and τ =
{(1, 2), (1, 3), (2, 4), (3, 5), (4, 3), (4, 2)}.

Then Rφ(ρ0) = M ({{1}, {2, 3}, {4, 5}}) (cf. Fig. 5.2). The derived analysis
lfp (Rφ(ρ0)) ◦ φ gives ∅ at the first iteration. Therefore, the computation of Rφ(ρ0)
is a kind of “forward analysis” which carries information useful to prove the property
we want to check.

5.2 Abstract construction

The results given until now were on the concrete domain, without abstractions.
Of course, the lfp-complete lower closure operator is, in general, not computable.
However, the goal of our approach is to get a new, computable analysis. Thus we
need abstractions.

In this section, we introduce them, both in ℘ (Σ) (to compute sound approxima-
tions in the first analysis) and in lco (℘ (Σ)) (to compute sound approximations of
the complete lower closure operators). We will show that the previous results are
still correct with these abstractions, thanks to the usage of lower closure operators1.

1Specifying the property with upper closures would require to use a lower abstraction on the
closure domain and on the initial concrete domain.
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This will prove the correctness of our method.
In the following propositions, Rφ is defined with the equation (2.3) if φ is co-

continuous or with the equation (2.4) otherwise.
The case of a greatest fixpoint is easier, so we present it first.

Proposition 5.2.1 (gfp analysis) Let φ be a monotone operator on ℘ (Σ), and
Q be a subset of Σ. We define ρ0 = λX.X ∩ Q. Let ν ∈ uco (℘ (Σ)) and Υ ∈
uco (lco (℘ (Σ))) be (upper) abstractions of ℘ (Σ) and lco (℘ (Σ)), respectively. Then,
with:

ρ = lfpλη.Υ(ρ0 tRφ(η)),

we have Q∩ gfpφ ⊆ gfp ν ◦ ρ ◦ φ.

Proof. The soundness property, applied on the computation of ρ, ensures that:
ρ w Υ(Rφ(ρ0)) Hence, ρ w Rφ(ρ0). Thus:

gfp ν ◦ ρ ◦ φ ⊇ gfp ρ ◦ φ

⊇ gfpRφ(ρ0) ◦ φ

⊇ Rφ(ρ0)(gfpφ) since Rφ(ρ0) is gfp-complete
⊇ ρ0(gfp φ)
⊇ Q ∩ gfpφ

�
For lfp analysis, we need to construct a continuous operator. We use the method

presented in proposition 2.4.16.

Proposition 5.2.2 (lfp analysis) Let φ be a monotone operator on ℘ (Σ), and Q
be a subset of Σ. We define ρ0 = λX.X ∩ Q. Let C be an extensive operator
on lco (℘ (Σ)) such that for all η, C(η) is continuous. Let ν ∈ uco (℘ (Σ)) and
Υ ∈ uco (lco (℘ (Σ))) be (upper) abstractions of ℘ (Σ) and lco (℘ (Σ)), respectively.
Then, with:

R = λη.Υ ◦ C(lfpλη′.Υ(η tRφ(η′)))
ρ = luis (R, ρ0) ,

we have Q∩ lfp φ ⊆ lfp ν ◦ ρ ◦ φ.

Proof. The proof is similar: we just need to show that ρ is greater than a lower
closure ρ′ which is lfp-complete for φ and greater than ρ0. �

It may seem that ρ would be long to compute, as there are two nesting fixpoints.
In practical applications, however, it is probable that we do not need to apply C
many times.

These theorems give a method to define a new, “reverse” analysis (since Rφ

depends on φ−1) which can be used to “guide” the first analysis, and thus to enhance
its result.

Expressing Rφ(η) is not so hard in practice. When η is generated by a set A of
subsets of Σ (that is, η =Mu (A)), we need only to know that Rφ(η) is generated by
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∪X∈Amin?(φ−1(↑ X)) (min? being either min or min′). Therefore, we do not need
to keep a representation of the whole Moore family, just of a set of generators.

Example 5.2.3 Starting from an abstraction ν of ℘ (Σ), we can use Υ = C =
λη.(λX.X ∩ ν ◦ η(Σ)) (which can be represented as an element of ν). Then the
result is the same for lfp and gfp analysis. To examine the result of this abstraction,
we take ν = λx.x.

Then, for all η ∈ Υ(lco (℘ (Σ))), η satisfies η =M({{x} | x ∈ η(Σ)}), so we only
have to express min′(φ−1(↑ {x})) to get Rφ(η).

With Σ being a set of states and φ = λX.A ∩ (F ∪ pre(X)) (that is, lgfpφ are
the states which can go to F or, for the gfp, loop indefinitely in A), we can use:

min′(φ−1(↑ {x})) =

 ∅ if x /∈ A
{∅} if x ∈ F
{{y} | y ∈ post({x})} otherwise

Then, with η = λX.X ∩ Y and ρ0 = λX.X ∩Q,

Υ(ρ0 tRφ(η)) = λX.X ∩ Y ′

with Y ′ = Q∪ post(Y ∩ (A\F ))

Thus ρ = λX.X ∩ (lfpλY.Q∪ post(Y ∩ (A\F ))). We got the reachability analysis in
A (with a slight modification due to F ). Using it before the backward analysis is a
well-known idea both in abstract interpretation and in model-checking [CC99].

With this abstraction, this is also the best result we can get with φ = λX.A∩(F ∪
p̃re(X)).

5.3 The combination

We showed how to construct a reverse analysis from an initial one, and with this
reverse analysis restrict the range of the first analysis. However, the backward-
forward combination used in abstract interpretation works in both ways: the result
of the first analysis is used to get a better reverse result, which we can use in the
first analysis, and so on.

Our approach is not symmetrical: the first analysis is on ℘ (Σ), whereas the
second one is on lco (℘ (Σ)). But we can still use the result of the initial analysis,
even restricted, in the reverse analysis. This property is given by the following
proposition for lfp analysis (the same result holds for gfp analysis):

Proposition 5.3.1 Let φ be a monotone operator on ℘ (Σ), and Q be a subset of Σ.
Let ρ1 be a lfp-complete lower closure operator for φ such that Q∩ lfp φ ⊆ lfp ρ1 ◦ φ,
and T be a subset of Σ such that T ⊇ lfp ρ1 ◦ φ. We define %T ∈ lco (℘ (Σ)) as
%T = λX.X ∩ T .

Let C be an extensive and monotone operator on lco (℘ (Σ)) such that for all η,
C(η) is continuous.
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Let ν ∈ uco (℘ (Σ)) and Υ ∈ uco (lco (℘ (Σ))) be (upper) abstractions of ℘ (Σ)
and lco (℘ (Σ)), respectively. Then, with:

RT = λη.Υ ◦ C(lfpλη′.Υ(%T u (η tRφ(η′))))
ρT = lfpλη.(%T u (ρ0 tRT (η))

then it exists ρ2 ∈ lco (℘ (D)) such that ρ2 is lfp-complete for φ, ρT w ρ2 and
Q∩ lfp φ ⊆ lfp ρ2 ◦ φ (hence, Q∩ lfp φ ⊆ lfp ν ◦ ρT ◦ φ).

With this proposition, we can construct a decreasing sequence (Tn) of elements
of ℘ (Σ) greater than lfpφ ∩ Q (along with a decreasing sequence of lower closure
operators (ρTn), each ρTn being greater than a lfp-complete closure operator ρn

which satisfies Q∩ lfpφ ⊆ lfp ρn ◦ φ):

T0 = Σ
Tk+1 = lfp ν ◦ ρTk ◦ φ
Tω =

⋂
k<ω Tk for all limit ordinal ω

Example 5.3.2 We continue the example (5.2.3). We have:

ρT = λX.X ∩ (lfpλY.T ∩ (Q∪ post(Y ∩ (A\F )))).

Then, in the sequence (Tn), Tn+1 is constructed by doing a forward analysis
restricted to Tn, then a backward analysis restricted to the result of the forward
analysis. This result is similar to the backward-forward combination used in abstract
interpretation [CC02], even if the goal is not the same.

5.4 Abstractions of lco (℘ (Σ))

To implement an analyzer based on property-driven checking, we must develop ef-
ficient abstractions of lco (℘ (Σ)). The first approach is to find abstractions from
existing abstractions of ℘ (Σ). As an upper Moore family is an element of ℘ (℘ (Σ)),
this work can be related to the search of abstractions of ℘ (℘ (Σ)). Following this
principle, we will express the abstractions Υ as operators on the lattice of upper
Moore families.

5.4.1 “Upper” abstraction

The “upper” abstraction was already given in example (5.2.3): from an abstraction
ν ∈ uco (℘ (Σ)), we define Υν(ρ) = {X | X ⊆ ν ◦ ρ(Σ)}.

Then we can make an equivalence between the elements of Υν and the elements
of ν, which helps the calculus.

All these abstractions are less precise than the “generic” upper abstraction, in-
dependent of ν: Υ0(ρ) = {X | X ⊆ ρ(Σ)}. This abstraction is represented on figure
(5.3b).
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Figure 5.3: Illustration of a lower closure operator as a Moore family (a), its generic
“upper” abstraction (b) and “interval” abstraction (c).
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5.4.2 “Interval” abstraction

The “interval” abstraction is a combination of an “upper” abstraction and a “lower”
one. The “upper” abstraction was presented before. The “lower” would give prop-
erties on the lowest elements of the lower closure operator ρ. However, the lowest
element of ρ is simply ∅. Thus, we will try to give properties on the “lower part”
of ρ\{∅}. On the other hand, we forget what is between this “lower part” and the
maximum ρ(Σ): all elements are possible fixpoints.

Our “generic” abstraction is then:

Υ0(ρ) = {∅} ∪ {X | ∃(Y,Z) ∈ ρ2, Y 6= ∅ ∧ Y ⊆ X ⊆ Z}

An illustration of this abstraction is given Fig. (5.3c).
Described with closure operators, we see that this abstraction keeps ρ−1({∅})

(i.e. ρ−1({∅}) = (Υ0(ρ))−1({∅})):

Υ0(ρ) = λX.

{
∅ if X /∈ {Y | ρ(Y ) 6= ∅}
X ∩ ρ(Σ) otherwise

Example 5.4.1 We represent the lattice of lco (D) with D = {⊥, 0,−,+,>} in
Fig. 5.4, and the “upper” and “interval” abstraction in this lattice.

With this definition, Υ0(ρ) is represented by an element of ℘ (Σ) and an element
of ℘ (℘ (Σ)). The first one, ρ(Σ), can be easily abstracted. However, the second
one ({Y | ρ(Y ) 6= ∅}) is difficult to approximate. A possible approach would be
to choose a (lower) approximation of

⋂
{Y | ρ(Y ) 6= ∅}. In practical cases, this

approach often gives ∅. Thus, we propose another alternative, which consists in
abstracting each element of the set before intersecting them in the abstract domain.
The more the abstract intersection keeps informations, the better this alternative
will be. Following this principle, we will use a Galois connection for this abstraction:
we do not require the abstraction function to be surjective.

Starting from an abstraction of ℘ (Σ) described as a Galois connection
℘ (Σ) −→←−α

γ
Σ] (Σ] being a complete lattice), we define Υα,γ ∈ uco (lco (℘ (Σ)))

as:

Υα,γ(ρ) = λX.

{
∅ if α(X) @] u]{α(Y ) | Y ∈ ρ}
X ∩ γ ◦ α(ρ(Σ)) otherwise (5.1)

We can remark that all elements of Υα,γ can be represented by an element of
Σ] × Σ]:

Theorem 5.4.2 Υα,γ ∈ uco (lco (℘ (Σ))), and Υα,γ v Υ0. Furthermore, Υα,γ is
associated to the Galois connection:

(lco (℘ (Σ)) ,v) −→←−
α•

γ•

(Σ],w])× (Σ],v])

α•(ρ) = (u]{α(Y ) | Y ∈ ρ}, α(ρ(Σ)))

γ•(l, u) = {X | l v] α(X) v] u}
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{⊥}

{⊥,−} {⊥,>} {⊥, +}

{⊥, 0,−}

{⊥,−,>}

{⊥, 0,>}

{⊥, 0, +}
{⊥, +,>}

{⊥,−, +,>}

{⊥, 0,−, +,>}

{⊥, 0,−,>}

⊥

>

+−

0

{⊥, 0}

{⊥, 0, +,>}

Figure 5.4: The lattice lco (D) with D = {⊥, 0,−,+,>}. Each lower closure is
described by its Moore family. Elements of the “upper” abstraction of lco (D)
(Υ(ρ) = λx.(ρ(D) ∧ x)) are the large discs, while elements of the “interval” ab-
straction are represented as squares. We can see that the structure of the “upper”
abstraction is exactly the structure of D, and that the “interval” abstraction is much
more precise. The three closures which are not in the “interval” abstractions are
closures which contains 0 and > without all the elements between (− and +). Their
image by this abstraction is then the identity closure represented by D.



CHAPTER 5. PROPERTY-DRIVEN ANALYSIS 64

Remark 5.4.3 If ρ is generated by A, then

α•(ρ) = (u]{α(Y ) | Y ∈ A}, α(∪A))

Thus we do not need to compute the whole Moore family to get the abstract element.

Example 5.4.4 We choose Σ = Z and Σ] = Z∞×Z∞, with α(X) = (minX, max X)
and γ(m,M) = {i | m ≤ i ≤ M} (this is the numerical interval domain [CC77],
except that we do not restrict this domain to “true” intervals, where m ≤M).

If ρ is generated by {{n, n + 3} | n ≥ 1}, then α•(ρ) = ((+∞, 4), (1,+∞)), and

Υα,γ(ρ) = λX.

{
∅ if max X < 4
X ∩ [1,+∞[ otherwise

We can see that this approximation is more precise than the “upper-only” abstraction
used in the example (5.2.3).

Remark 5.4.5 As we can see in the example above, using a Galois connection for
the abstraction of ℘ (Σ) is very important: we can use a larger abstract domain Σ],
with α non-surjective, to obtain a better precision. On the contrary, using the clas-
sical interval domain for Σ] (where all elements (m,M) with m > M are collapsed
into ⊥) would give (⊥, (1,+∞)) for α•(ρ), which is less precise. Since all closure
operators induce a surjective Galois connection, we can not use this framework here.

5.5 Links with tree semantics

The technique of property-driven checking and the tree semantics described in chap-
ter 4 are not unrelated. We already remarked that fixpoint-complete lower closure
operators are used for the combination of backward and forward semantics of ex-
tended transition systems (cf. remarks 4.5.2 and 4.5.3). Using the property-driven
checking technique on backward semantics of extended transition systems, we can
develop more efficient means of combination. On the other hand, it is possible to
develop an extended transition system from a monotonic operator φ with formulas
related to the formulas used to construct the lower closure operator.

Let φ be a monotonic operator on a domain ℘ (Σ). We define an extended
transition system 〈Σ, τφ〉 as:

∀σ ∈ Σ, τσ = min?(φ−1(↑ {σ})) (5.2)

with min? being either min or min′.

Proposition 5.5.1 If Bm
WF (resp. Bm) is the maximal well-founded backward se-

mantics (resp. maximal backward semantics) of 〈Σ, τφ〉, then:

root(Bm
WF ) = lfpφ

root(Bm) = gfpφ
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Then the forward maximal semantics of 〈Σ, τφ〉 starting from trees rooted by Q
is a “reverse” semantics for the analysis of lgfp φ ∩Q.

Example 5.5.2 Let φ = lgfpX.(A ∪ (B ∩ pre(X)) ∪ (C ∩ p̃re(X))) defined on a
standard transition system 〈Σ, τ0〉. When we apply the proposition, we get the ex-
tended transition system described in section 4.4.12. Hence we re-demonstrate the
theorem 4.4.1.

On the other hand, when φ is defined on an alternating transition system 〈P,Σ,∆〉,
with one fixpoint, as in the section 4.4.2, the extended transition system generated
by our proposition is, in general, “smaller” than the one described in section 4.4.2.
Here the result depends on the definition of min′, whereas the description made in
section 4.4.2 does not try to “minimise” the set of successors of each state.

The tree semantics gives a “concrete vision” of the forward analysis (as a con-
struction of a set of trees), something the lower closure construction can not do.
Furthermore, as we keep the history of the computation in the trees, it is more ex-
pressive than lower closure on states (to check liveness properties, for example, tree
semantics may be more efficient as we can abstract the evolution of the computation).

On the other hand, lower closure operators have some advantages: the domain
is well studied and abstractions are easier to develop. Moreover, the computation of
the lower closure operator, which involves min?(φ−1(↑ X)) for any X, can be faster
(in the number of iterations) than the computation of the forward tree semantics
which involves min?(φ−1(↑ {σ})) for each state (as λX.min?(φ−1(↑ X)) is in general
not monotonic).

Example 5.5.3 Let Σ be a large set with {0, 1, 2, 3} ⊆ Σ. Q = {0}, and φ is a
monotonic and co-continuous operator such that:

min(φ−1(↑ {0}) = {{1, 2}}
min(φ−1(↑ {1}) = {∅}
min(φ−1(↑ {2}) = {{1}, {3}}

min(φ−1(↑ {1, 2}) = {{1}}
min(φ−1(↑ {3}) = {...}

A complete operator ρ for φ greater than λX.Q ∩ X is defined by the Moore
family:

ρ =Mu ({0}, {1}, {1, 2}) .

This operator is reached after three iterations. On the other hand, the forward tree
semantics may take many more iterations to compute as it explores the descendants
of the state 3.

2Though pre is not co-continuous, we can use here min′ = min.
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5.6 Conclusion

The main point of this property-driven verification is the possibility of deriving a
new abstract analysis from an initial analysis and the description of the property we
want to check. lco (℘ (Σ)) is the domain of this new analysis, hence we need to over-
abstract lower closure operators. We showed that this operation is possible while
keeping the correctness of the analysis, something which would not work with upper
closure operators. The efficiency of this approach relies mainly on the efficiency of
the abstractions on lco (D). Hence, to design an analyzer, we need to develop an
abstraction of lco (D).



Chapter 6

Design of an analyzer

From the results on property-driven analyses, we developed a small analyzer based
on Cousot’s Marktoberdorf generic analyzer [Cou99]. In this chapter we describe
the new results used to implement our analyzer, and the different choices we made.

6.1 Language, semantics and concrete domain

From the language of the initial analyzer1, we did only small changes:

• We did not use the uninitialisation error value. Rather, the initial values
of variables are defined by the user. Hence, there is only one (arithmetic)
error Ω, and the values are IΩ = [min int,max int] ∪ {Ω}. We will note I =
[min int,max int].

• We add a new arithmetic expression ? in (A1,A2), which gives a random
integer between the evaluation of A1 and A2 (and an arithmetic error if the
former is strictly greater than the latter). This expression is added to make
an interesting non-deterministic operation.

Thus, the language uses arithmetic expression Aexp, boolean expression Bexp,
command Com and list of commands Seq. The syntax is defined as:

A ∈ Aexp ::= n | x | ? in [A1, A2] | un A | A1 bin A2

B ∈ Bexp ::= true | false | A1 = A2 | A1 < A2

| B1 and B2 | B1 or B2

C ∈ Com ::= skip | x := A | if B then S1 else S2 fi
| while B do S od

S ∈ Seq ::= C | C ; S

1An very simple imperative language, with only integers and without functions.

67
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In this definition, n are integers, x ∈ V variables, un ∈ {+,−} unary operators and
bin ∈ {+,−, ∗, /, mod} binary operators.

Because this analyzer is only a prototype, we only check simple temporal prop-
erties, with only one fixpoint and both forms of non-determinism. The user can
specify the initial and final conditions of the analysis (as symbolic expressions), as
well as the nature of the random generators (input or random), and the fixpoint
used in the temporal specification (least fixpoint or greatest fixpoint).

6.2 Abstract domain

We expose briefly each stage of the construction of the abstract domain.

6.2.1 Abstract domain of values

First, we need to abstract lco (℘ (IΩ)). To abstract lco (℘ (I)), we can use the domain
defined in example 5.4.4. We denote Iint the abstract domain in this example. We re-
call that an element of Iint is defined by two pairs of integers ((Mm,mM), (mm,MM))2

such that mm ≤ Mm ≤ MM and mm ≤ mM ≤ MM (except for the bottom of Iint

which is represented by
((min int,max int), (max int,min int))).

To abstract lco (℘ (IΩ)), we define the set T = {INI,ERR,TOP}, and we describe
an abstraction α from lco (℘ (IΩ)) to lco (℘ (I)) × T . α1(ρ), α2(ρ) being the two
components of the abstraction, we define:

α1(ρ) = {X\{Ω} | X ∈ ρ}

α2(ρ) =

 INI if ∀X ∈ ρ, {Ω} /∈ X
ERR if ρ 6= {∅} ∧ ∀X ∈ ρ\{∅}, {Ω} ∈ X
TOP otherwise

lco (℘ (I))×T can be defined as a lattice with the structure defined Fig. 6.1, and
α is then the abstraction of a Galois connection.

Our abstract domain of values is then Iint × T . The intuitive meanings of the
values of T are:

• INI means that no error is possible. The lower closure associated ρ satisfies
ρ(X) = ρ(X\{Ω}) for all X ⊆ IΩ.

• ERR means that all elements of ρ, except ∅, contains Ω. Thus, Ω /∈ X ⇒
ρ(X) = ∅.

• TOP is the “do not know” answer.

We loose the relation between the Ω and the non-error values in a same set in
ρ. However, we keep the option “error everywhere”, which enables to know whether
the error is not avoidable.

2mm stands for min min, Mm for maxmin, mM for min max and MM for maxmax
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{∅}, INI

lco (℘ (I))× {INI} lco (℘ (I))× {ERR}

lco (℘ (I))× {TOP}
except {∅}, TOP

except {∅}, INI

Figure 6.1: Lattice lco (℘ (I)) × T , divided in three parts, one for each value of T .
Note that ({∅}, INI) is the global bottom, and that ({∅},TOP) does not appear (it
is collapsed with ({∅},ERR)).

6.2.2 Abstract environment

V is the set of variables, and R = V→ IΩ are the environments. We need to abstract
lco (℘ (R)).

Non-relational abstraction

The non-relational abstraction abstracts lco (℘ (R)) to V→ lco (℘ (IΩ)):

α(ρ) = λx.{{E(x) | E ∈ E} | E ∈ ρ}

This abstraction keeps no relation at all between variables. More than for abstrac-
tions of ℘ (R), this is problematic: we can not know, in this case, if a random
generator is dependent or not on the other values in the memory. To illustrate the
problem, we can use the example given section 4.1. To verify the property, we must
be sure that, in program point (2), random returns 0 and 1 independently of the
value of x. This is not possible with a truly independent abstraction.
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On the other hand, just knowing the independence of the variables is sufficient.
So we can use a very weak relational abstraction here.

Weak relational abstraction: two variables case

First, we give a weak abstraction of lco (℘ (IΩ))×lco (℘ (IΩ)) (like with two variables).
Like the non-relational abstraction, we keep an abstract value for each component,
But we add a boolean, which expresses the dependence between both components
(true means that the components may depend from each other). Here, saying that x
and y are independent in a lower closure ρ is a Moore family generated by Cartesian
products of sets of values.

Hence, the abstract domain is lco (℘ (IΩ))× lco (℘ (IΩ))× B. The concretization
of (ρx, ρy, false) is

γ(ρx, ρy, false) =Mu (X × Y | X ∈ ρx ∧ Y ∈ ρy) .

The concretization of (ρx, ρy, true) is γ(ρx, ρy, true) = {Z ∈ ℘ (IΩ)×℘ (IΩ) | πx(Z) ∈
ρx ∧ πy(Z) ∈ ρy} with πx(Z) (resp. πy(Z)) the projection of Z to its first (resp.
second component).

The concretization of (ρx, ρy, true) corresponds to the concretization of (ρx, ρy)
for the non-relational abstraction. Furthermore for all ρx, ρy, γ(ρx, ρy, false) ⊆
γ(ρx, ρy, true), which means that the “independence” (expressed by the value false)
carries more information than the “dependence”.

Example 6.2.1 To illustrate our abstraction, we restrict the values to S = {0, 1}.
We want to study an abstraction of lco (℘ (S × S)) to lco (℘ (S)) × lco (℘ (S)) × B,
or, more precisely, we want to describe the meaning of the abstract values. To
simplify, we suppose that the first component of the abstract value is {∅, {0, 1}}, and
that the second satisfies ρ({0, 1}) = {0, 1}. Still, we have eight possible cases (four
possibilities for the second lower closure, and two possibilities for the boolean), all
described in Fig. 6.2, with the order between them.

When the boolean is false, the values are independent, which means that all the
generators of the lower closure are Cartesian products, whereas when the boolean is
true we can keep any generator.

The relation is very weak, and its meaning is restricted to the “lower” part of the
abstraction, but it is sufficient to keep the independence of the random generators,
which was our goal. In particular, the abstract functions will be easier to compute
than with stronger relations like octagons.

General case

Our first generic abstract domain is (V → lco (℘ (IΩ))) × ℘ (℘ (V)), with the con-
cretization:

γ(f,B) = {Z | ∀x ∈ V, πx(Z) ∈ f(x) ∧ ∀V /∈ B, πV (Z) = ×x∈V πx(Z)}
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a

c e b

g

h

d f

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

a: {{0, 1}}, false
b: {{0, 1}}, true

c: {{0}, {0, 1}}, false
d: {{0}, {0, 1}}, true

e: {{1}, {0, 1}}, false
f: {{1}, {0, 1}}, true

g: {{0}, {1}}, false
h: {{0}, {1}}, true

Figure 6.2: The eight cases of example 6.2.1. Each case is described by the value of
the boolean, and the generators of the second lower closure operator in the abstract
value. For each case, we give the generators of the concretized lower closure. We
give also the order between them. We can see that adding the independence boolean
(case false) restrict greatly the concrete lower closure.
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y
z

x

(0,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

Figure 6.3: An example of a set of tridimensional points which gives Cartesian
products when projected in every direction, but is not a Cartesian product.

The principle is to associate a boolean to any subset V of V, describing the idea
that these variables are “globally” dependent. If the variables of V are “globally”
independent (V /∈ B), any fixpoint of the lower closure, projected to the space of
these variables, must appear as the union of Cartesian products of fixpoints in f(v)
for v ∈ V .

Note that three variables may be “independent” when taken by couple without
being“globally” independent (a set of points in dimension 3 may look like a Cartesian
product when projected in any direction, but not be itself a Cartesian product, cf.
Fig 6.3 for an example). Thus we cannot keep only dependence relations between
pairs of variables, and construct the “global” dependence function from it.

However, keeping an element of ℘ (℘ (V))) is too costly and, in practice, it is not
useful3. Rather, we keep only a symmetric relation between variables (i.e. a subset
of ℘ (V× V)) expressing the dependence of the variables, but such that all sets of
variables completely unrelated must be globally independent (thus, this is a subset
of the real dependence relations between each couple of variables, but from it we can
reconstruct the whole set of dependences). This construction can be viewed as an
abstraction, where the concretization function γV between ℘ (V× V) and ℘ (℘ (V)))
is:

γV(R) = {V ∈ ℘ (V) | ∃(v1, v2) ∈ V 2, (v1, v2) ∈ R}.

Hence, the domain of abstract environments is (V→ Iint × T )× ℘ (V× V). Due
to this relational abstraction, we do not have the best abstraction function α, but we
still have the concretization function γ. Though we cannot use the Galois connection
framework, we can use frameworks developed in [CC92b].

3It appears to be difficult to infer the dependences with this level of precision.
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6.2.3 Abstract domain

Lab is the set of program points, and we want to abstract lco (℘ (Lab→ R)). Here
we can use a simple non-relational abstraction from lco (℘ (Lab→ R)) to Lab →
lco (℘ (R)).

This abstraction forgets information on conditionals (which states are related
between the branches) and loops. This may be a problem, for example, with the
program:

x:= ? in [0,1] ;
if (x=0) then x:=0 else x:=1 ;

Before the test, there is only one non-empty fixpoint for x ({0, 1}), but after the test,
we get two fixpoints ({0}, {1}). Hence we loose information. In practice, we think
that it is possible to deal with this issue without modifying the abstract domain,
by a good implementation of the abstract test during the backward analysis. Here,
we can see that both branches of the test are taken. If one branch can not satisfy
the specification, the backward analysis must propagate that the specification is not
satisfied. An example is given in section 6.3.2.

6.3 Examples

Rather than describing the whole abstract functions of the analyzer, we give some
examples of analyses.

6.3.1 First example

This example is the first simple program described in section 4.1. The analysis is
given on figure 6.4. The first random generator (for x) is controlled by the user,
whereas the second (for y) is “forced”. The initial states are the non-error states of
program point (1), and the final states are the states of program point (5) satisfying
x = 1.

For each program point and each variable, we give:

1. The error status (ini, err or top), corresponding to the values of T .

2. The four integers (mm,Mm, mM, MM). Informally, it means that for each
generator, the variable has a value in [mm,Mm] and in [mM,MM ].

3. The list of variables which are dependent of this variable. Since the relation
of dependence is symmetric, we give it only once.

For example, in program point (3), with only the forward analysis, we get the
result:

x:[{ ini: (0,1,0,1) }]; y:[{ ini: (0,0,1,1) }]
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which means informally that x is in {0, 1}, y is in {0, 1} and takes all values in {0, 1}
whatever the value of x (as they are independent). If the computations were exact,
the generators of the concrete lower closure operators would be {{(x : 0, y : 0), (x :
0, y : 1)}, {(x : 1, y : 0), (x : 1, y : 1)}}, which are exactly the concretization of the
abstract environment. In this case we do not loose information.

In program point (4), the result is:

x:[{ ini: (0,1,1,2) }]; y:[{ ini: (0,0,1,1) },x]

which means that x is in [0, 2] and takes at least one value in [0, 1] and one value in
[1, 2], y takes all the values of [0, 1], and the two variables are dependant. Note that
the real generators would be {{(x : 0, y : 0), (x : 1, y : 1)}, {(x : 1, y : 0), (x : 2, y : 1)}.
Hence we loose much information, due to the sum of two variables. However, this is
not a problem, thanks to the following backward analysis.

With a backward analysis following the forward analysis, we get x = 1 in program
point (4), and y takes all the values in [0, 1], which gives the elements {(x : 1, y :
0), (x : 1, y : 1)}, Hence, in program point (3), it yields {(x : 1, y : 0), (x : 0, y : 1)}
which is not possible given the fact that x and y must be independent. Thus, the
application of the lower closure operator gives BOT (which represents ⊥).

A new forward analysis starting from this result would give, of course, ⊥ every-
where, which proves that the user can force x to be equal to 1 at the end of the
program.

6.3.2 Second example

We analyse the example studied in section 3.3. The result of the analysis is given
figure 6.5, after one forward analysis, and after one forward followed by one backward
analysis. As we get ⊥ for the initial program point at the end of the backward
analysis, making a new forward analysis would give bottom everywhere, which is
not useful.

The difficult point in this analysis is the backward computation at program point
(2). The analyzer detects that both branches of the analyzer are taken, indepen-
dently of the variables x and n. Thus, it computes an intersection of the two envi-
ronments of program points (3) and (5). Note that, thanks to the forward analysis
made before, the result would be the same if we replace

if (? in [0;1] = 1) then

by

a := ? in [0;1]
if (a = 1) then
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Figure 6.4: Example described in section 6.3.1.
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Figure 6.5: Example of section 6.3.2. We give the domain computed after one
forward analysis, then after a forward followed by a backward analysis.
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6.4 Discussion

We gave a few examples to show the prototype. We need to reduce the loss of infor-
mations in some cases (conditionnals in particular). Trace-based partitioning [HT98]
may be useful to achieve this goal. We must also extend the class of temporal prop-
erties the user can specify.



Chapter 7

Conclusion

Checking complex properties on programs is difficult. Analyses are costly, and often
not precise enough to confirm (or refute) the property. We tried to deal with these
issues by exploiting as much as possible the interactions between the specification
and the given program, even when the abstract domain is not very expressive.

We used three approaches, of varying complexity and efficiency, The extension
of the standard combination abstracts the checking of the property (as a backward
analysis) and combine it with a reachability analysis. This approach is simple and
easy to implement, and appliable to all already existing abstractions (on sets of
states), and with a large class of branching-time properties. This method, however,
suffers from its imprecise forward analysis which is not specialised.

Including the property to be proved in the semantics to get the tree-based se-
mantics is our second method. We showed how this inclusion is possible for CTL
formulas and the forward and backward maximal semantics of the new mathematical
objects. However, while tree semantics is very powerful compared to trace semantics,
sets of trees are difficult to handle. The implementation of this approach, therefore,
would be very difficult.

Our third approach is to include the property in the computation of the fixpoint.
We show how to derive a new, reverse analysis from the initial analysis and the spec-
ification. The result of this reverse analysis can be used to guide the computation of
the initial analysis towards the verification of the specification. Since one analysis is
derived from the other, their combination is guaranteed to be sound. Furthermore,
we can exploit all the known results on lower closure operators to develop our ab-
stractions. Analyzers based on this approach are easier to implement than analyzers
based on tree semantics, but may be less powerful, for example when attempting to
check liveness properties.

While we restrict to branching-time temporal properties, we hope that some
of those approaches can be extended to other properties. For example, forward
and backward semantics for probabilistic programs have been devised [Mon01], but
these semantics give uncompatible results and do not seem to combine well. We

78
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hope that the method of property-driven analysis can be adapted to the verification
of probabilistic temporal properties.
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[Cou78] P. Cousot. Méthodes itératives de construction et d’approximation de
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[Mas01] D. Massé. Combining backward and forward analyses of temporal prop-
erties. In O. Danvy and A. Filinski, editors, Proceedings of the Second
Symposium PADO’2001, Programs as Data Objects, volume 2053 of Lec-
ture Notes in Computer Sciences, pages 155–172, Århus, Denmark, 21
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[Mas03] D. Massé. Property checking driven abstract interpretation-based static
analysis. In Proceedings of the Fourth International Conference on Veri-
fication, Model Checking and Abstract Interpretation (VMCAI’03), New
York, USA, January 2003. To appear.

[Mau99] Laurent Mauborgne. Representation of Sets of Trees for Abstract Inter-
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