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SMOF - A Safety MOnitoring Framework for
Autonomous Systems
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Abstract—Safety critical systems with decisional abilities, such
as autonomous robots, are about to enter our everyday life.
Nevertheless, confidence in their behavior is still limited, par-
ticularly regarding safety. Considering the variety of hazards
that can affect these systems, many techniques might be used to
increase their safety. Among them, active safety monitors are a
means to maintain the system safety in spite of faults or adverse
situations. The specification of the safety rules implemented
in such devices is of crucial importance, but has been hardly
explored so far. In this paper, we propose a complete framework
for the generation of these safety rules based on the concept of
safety margin. The approach starts from a hazard analysis, and
uses formal verification techniques to automatically synthesize
the safety rules. It has been successfully applied to an industrial
use case, a mobile manipulator robot for co-working.

Index Terms—Fault tolerance, Safety, Autonomous system,
Safety monitor, Model checking, Safety rules

I. INTRODUCTION

New safety critical systems are about to enter into our
homes, work places or hospitals. These systems can operate
without human intervention and take their own decisions,
while performing tasks in human vicinity. Confidence in the
safety of such autonomous systems, e.g., assistive robots,
medical robots, or co-workers, is the main barrier to their
deployment in everyday life. Indeed, many threats can af-
fect the behavior of these systems and induce catastrophic
consequences. Threats may come from faults in the design,
from physical failures at run-time, or may be due to complex
interactions with users or the environment. These systems
have also to cope with many uncertainties in the perception
of an unstructured environment. Attaining the required level
of confidence calls for the combined utilization of a set of
methods that can be grouped into four major categories [1]:
fault prevention, fault removal, fault forecasting and fault
tolerance methods. In this paper, the focus is on fault tolerance.

No complex system can be considered as fault-free, and
this is particularly true of autonomous systems having non-
deterministic decisional software. Moreover, adverse and un-
specified situations may also induce a hazardous behavior.
Fault tolerance mechanisms are needed to deal with residual
faults and adverse situations in operation. “Safety monitors”
are one such type of mechanisms. Their role is to observe the
system and its environment, and to trigger interventions that
keep the system in a safe state. In practice, their specification

M. Machin, J. Guiochet, H. Waeselynck, M. Roy and L. Masson are with
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and design is usually done in an ad hoc manner. A very
limited set of safety rules is considered, and interventions
often have a permanent effect (e.g., if a bumper detects contact
with an obstacle, it disconnects the power of a mobile robot).
We argue that, in the future, versatile autonomous systems
will have to deal with a richer set of safety rules, managing
autonomously the activation and deactivation of temporary
interventions. While ensuring safety, the rules should still
permit functionality of the considered system, a property that
we call permissiveness.

Extending previous work [2], [3], [4], this paper presents a
Safety MOnitoring Framework (SMOF) to specify such rules,
starting from a hazard analysis and using formal verification
techniques to synthesize the rules. The synthesis tool, available
online [5], accommodates both safety and permissiveness
requirements. The paper also reports on the use of SMOF
in an industrial case study.

The paper is structured as follows. Section II introduces
baseline and concepts for safety monitoring and provides an
overview of the proposed framework. Section III presents
how the system and properties are formalized. Section IV
explains the algorithm to synthesize the safety rules, using the
NuSMV model-checker. Section V deals with the last step of
the process to check the consistency of all synthesized rules.
Section VI presents an application to a real industrial case
study: it demonstrates the complete approach on a mobile
robot, from hazard analysis to implementation of synthesized
rules. Section VII discusses related work. We conclude in
Section VIII, outlining the benefits and limitations of SMOF,
and discussing future directions.

II. BASELINE AND CONCEPTS

A. Concepts
Taking inspiration from the diverse monitor defined by [6],

we define a safety monitor as a device responsible for safety,
in opposition to the main control channel which is responsible
for all other functional and non-functional requirements of
the system. The monitor is the ultimate protection against
interaction faults or arbitrary behavior of the control channel
that adversely affect safety. To this end, it is equipped with
means for context observation (i.e., sensors) and able to
trigger safety interventions. The whole safety channel must
be assigned a high integrity level. In compliance with safety
standards, there must be some degree of independence from
the main channel. Moreover, the monitor should justifiably be
able to trust the sensors and actuators it uses.

Assuming appropriate implementation means, our focus is
on specifying the behavior of the monitor, i.e., on determining
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which intervention should be applied, and when. Baseline
concepts are the following.
A safety invariant (SI) is a sufficient condition to avoid
a hazardous situation. We consider, conservatively, that if a
safety invariant is violated, there is no possible recovery action.
Thus, any state violating the safety invariant is a catastrophic
state.
Example: “the robot speed shall not exceed 3m/s” (the speed
beyond which harm is considered to be inevitable).
A safety intervention is an ability of the monitor to constrain
the system behavior in order to prevent the system from
violating a safety invariant. An intervention is only effective
when its preconditions are satisfied. We distinguish two types
of interventions: inhibitions and actions.
A safety inhibition prevents a change in system state.
Example: “lock the wheels”, with “robot stationary” as a
precondition.
A safety action triggers a change in system state.
Example: “apply brake”.

As recovery is not possible, interventions have to be applied
before the catastrophe, i.e., in non-catastrophic states with
some margin from the catastrophic border. Hence, the set
of non-catastrophic states is partitioned into warning states,
where interventions are applied, and safe states, in which the
system operates without constraint (see Fig. 1). The warning
states are defined such that every path from a safe state to a
catastrophic state passes through a warning state.
A safety rule defines a way of behaving in some warning
states. It is composed of a condition and an intervention to
apply when the condition is true. The condition identifies a
subset of warning states. The intervention is intended to abort
catastrophic paths via these warning states.
Example: “if the robot speed is greater than 2.5m/s then apply
brake.” (taking a 0.5 margin below the safety threshold of
3m/s.
A safety strategy is a set of safety rules intended to ensure
a safety invariant. It should abort all paths to the catastrophic
states.
Example: “If the robot speed is greater than 2.5m/s then apply
brake; if the ground slope is greater than 10% then apply
brake.”

The strategy specified for the monitor can be analyzed
according to two antagonistic viewpoints.
Safety. The strategy is said safe if it ensures the safety
invariant in the monitored system, i.e., it guarantees the non-
reachability of the catastrophic states.
Permissiveness. The strategy is said permissive if the mon-
itored system is able to freely move inside a specified state
space. A maximum permissiveness would authorize all possi-
ble states including catastrophic ones.

For example, a strategy allowing the system to operate at
high speed, manipulating a sharp object in human presence,
would be highly permissive but unsafe. Intrinsically, safety
is ensured by reducing the possible behavior of the system:
as soon as the monitor triggers an intervention, it reduces
permissiveness. As autonomous systems are particularly ver-
satile, they are supposed to operate in many different states.
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Fig. 1. Partition of system states in catastrophic, warning and safe states.
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Fig. 2. Overview of the process

To achieve the assigned tasks, the monitored system should
keep its ability to reach a wide range of states.

In this paper, we propose a systematic approach to produce
strategies that are safe but restrict permissiveness only to the
extent necessary to ensure safety. Safety is ensured by the
identification of safety margins, while permissiveness involves
state reachability properties that can be tuned by the user.

B. Process overview

Figure 2 presents the overall process to use SMOF. The
process starts with a HAZOP-UML hazard analysis [7]. In
this method, the use of the system is modeled with UML use
case and sequence diagrams. Each message is then analyzed
with generic keywords such as “None”, “As well as”, etc.
That results in deviations in the system, whose causes, con-
sequences and severity are assessed, focusing on operational
hazards. This analysis outputs safety invariants expressed in
natural language. We consider as a running example a mobile
robot with a manipulator arm and the safety invariant: The arm
must not be extended beyond the platform when the platform
velocity is greater than V0.

Each safety invariant is then expressed formally with pred-
icates on variables that are observable by the monitor. This
second step may induce an early feedback on the system
design, by revealing the lack of key observation mechanisms.

We focus for now only on predicates involving variables
compared to fixed thresholds. This type of safety threshold
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is amenable to formal verification and is used in many real
systems. Let us consider two monitor observations: the abso-
lute speed v, and a Boolean observation of the arm position
a (true when the arm is above the base, false when the
arm is extended). The exemplary safety invariant is formalized
as SI = (v < V0) ∨ (a = true). Its negation defines the
catastrophic states as v ≥ V0 ∧ a = false.

The third step is to build state-based models using the
SMOF modeling template. In order to keep models simple
enough to be validated, each safety invariant is modeled
separately. In this step, we determine the partition of non-
catastrophic states into safe states and warning states by
splitting intervals or sets of variable values. This is done one
variable after another. For example, the velocity interval [0, V0[
from SI is partitionable in two intervals according to a margin
m: [0, V0 − m[ and [V0 − m,V0[. In the case of the arm
position, the observation is Boolean, hence no margin exists.
The resulting model is shown in Figure 3. There are three
warning states in which interventions may be applied. We
consider two available interventions: the monitor is able to
engage brake (action) and to prevent the arm from extending
(inhibition).

The fourth step is the strategy synthesis. Figure 4 illus-
trates a returned strategy, which applies brake in s1 and arm
inhibition in s2 and s3. The interventions delete a number
of transitions, the ones directly leading to the catastrophic
state plus extra ones. As the system can still reach all non
catastrophic states, the strategy is safe and permissive. When
the model does not admit such a strategy, the user has several
options: 1) reduce permissiveness, for example accept that
a given warning state be no longer reachable; 2) add new
interventions, which will have to be implemented in the real
system; 3) modify the model, which may require revisiting the
hazard analysis.

As safety invariants are processed separately, the fifth step
checks the consistency of strategies that ensure different
invariants. The checked set of strategies are then implemented
in a real time safety monitor, for on-line verification.

The rest of the paper provides a detailed presentation of the
steps supported by the SMOF template and tools: modeling,
synthesis and consistency analysis. Then, the complete process
is demonstrated on an industrial case study.

III. MODELING WITH A SMOF TEMPLATE

A SMOF model formalizes the part of the system related
to one safety invariant, seen from the monitor’s point of view.
It gathers all information necessary to produce strategies that
ensure the safety invariant:
• Behavior: automaton of the system in absence of the

monitor, containing all paths to the catastrophic states.
• Interventions: abilities of the monitor to constrain the

system behavior.
• Safety and permissiveness: desired properties of the mon-

itor action.
Fig. 5 gives a structured view of these concepts. The

behavior contains warning states. A safety rule associates an
intervention (or a combination of interventions) to one of these
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Fig. 3. Exemplary behavior model. There are two state variables: the velocity
v ∈ {0,1,2} encoding the partition {[0, V0−m[, [V0−m,V0[, [V0, Vmax[},
and the arm position a ∈ {0,1} encoding {true, false}. The warning states
(labeled W ) are those that lead the system to the catastrophe C in one step.
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Fig. 4. Exemplary behavior modified by a safety strategy

warning states. A strategy is composed of potentially many
safety rules. Safety and permissiveness are properties attached
to a pair of behavior and strategy. Since the behavior is a
fixed part of the model, while the strategy is the varying
part changed by the synthesis process, we will feel free
to say that the strategy (rather than the pair) satisfies the
properties. Validity is a side-property linked to the intervention
preconditions (see Section III-B).

To formalize our model in this section, we choose to
use languages and tools available in the model checking
community. The synthesis presented in section IV is based
on the model-checker NuSMV2 [8]. In what follows, code
and output of NuSMV are given in typewriter font.

A. Behavior

The safety invariant involves observable variables compared
with fixed values. The comparisons determine a first abstrac-
tion of the variables into classes of values, e.g., the values that
are below or above a safety threshold. The partition is then
refined by the consideration for margins (formal conditions
for the existence of a margin are studied in [2]). To ease
the modeling in NuSMV, the resulting classes of values are
encoded by integers, as illustrated by the state predicates in
Fig. 3. For example, in the initial state, the class of values
v < V0 − m is encoded as v = 0 and overall the abstract
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Fig. 5. Meta-model of the SMOF modeling template

version of v is in the range 0 . . . 2. The user must also enter a
definition of the catastrophic states, with the predefined name
cata. In the running example, this would be:

DEFINE cata := v=2 & a=0.

The behavior states result from the Cartesian product of the
ranges of all abstract variables. The user does not need to list
the states: NuSMV transparently builds the state space from
the declaration of variables. By default, all the combinations
of abstract variable values (i.e., states) are possible and all
transitions between pairs of states are implicitly declared. The
user can add constraints to delete states and transitions that
would be physically impossible.

The most common constraint is the continuity of a vari-
able, e.g., the velocity cannot “jump” from 0 (standing for
[0, V0 −m]) to 2 ([V0, Vmax]). The SMOF template provides
a predefined module Continuity to conveniently declare a
continuous variable x. It encapsulates the constraint next(x)
= x | x+1 | x-1, i.e., the next value of x can stay in
the same interval or move to an adjacent interval, but it
cannot jump from one interval to another that has no common
boundary. SMOF also includes the predefined constraint that a
catastrophe is irreversible, i.e. the cata states are sink states.

The Cartesian product assumes that the variables are in-
dependent from each other. If they are not, the user has to
declare the dependency constraints. The ability to express
them depends on the current abstraction. For example, let us
consider two observable variables, position p and velocity v
of a robot. To express the constraint that p cannot change
when v = 0 (a very narrow interpretation of derivative), we
need an abstraction distinguishing the concrete zero value of
v from other values. In our running example, the partition
would be too coarse, as all concrete values in [0, V0 −m] are
encoded by the same abstract value 0. If a dependency is not
modeled, the abstract model has less constraints than it should,
or from another point of view, it has too many transitions. The
over-approximation may affect the permissiveness analysis.
However, if this “super-graph” is safe, so is the “real” model.

B. Interventions

An intervention is modeled by its effect and preconditions.
The effect is a constraint that cuts some transitions from the
current state state, to reduce the set of possible next states.

The effect is guaranteed only if the preconditions hold. We
distinguish two preconditions. The State precondition, noted
PrecondState, models the states in which the intervention can
be applied. For example, it is not desirable to physically lock
the wheels of a moving vehicle. The strategy is said valid if it
never applies the intervention in states violating PrecondState
(Validity property). The effectiveness of an intervention may
also depend on the system history. We choose to only take into
account the state preceding the application of the intervention,
and consider a sequential precondition, noted PrecondSeq, that
must hold in this state. It constrains the transitions that trigger
the intervention, when moving from a state in which the
intervention is not applied to a state in which it is.

Fig. 6 gives an example of sequential precondition for
the intervention “braking”. The intended effect is to avoid a
concrete velocity greater than Vc. Let us consider two paths P1

and P2 in the state space (we assume 9 abstract states). In each
case, the intervention is triggered upon entering the warning
state W0. Along P1, the braking is triggered as soon as the
monitors detects the crossing of the margin threshold Vc−Vm.
The margin accounts for the sampling period of observation
and worst case reaction time, so that the effect is guaranteed.
On the contrary, along P2, the velocity can be arbitrarily close
to Vc: there is no guarantee that the system has time to brake
before Vc is reached.

SMOF provides a predefined Intervention module,
which could be used as follows to declare the braking pre-
conditions and effect:

-- myInterv : Intervention(precondState,
precondSeq, flag_myInterv, effect)

brake : Intervention(TRUE, v=0 & next(v)=1,
flag_brake, next(v)!=v+1);

In this example, brake has no PrecondState (a TRUE value
is passed). The PrecondSeq parameter requires the braking
to be triggered on a transition from v=0 to v=1 (using the
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Fig. 6. Example of sequential precondition: “braking is triggered by a
transition from a state satisfying v < vc − vm”.

operator next). The effect is that the next value of v cannot
increase. The flag_brake variable is a placeholder for the
braking condition in synthesized strategies.

The module encapsulates a Boolean variable encoding the
status of the intervention, currently applied or not. A pre-
defined constraint states that the intervention is applied if
and only if it is asked by the strategy (according to the
synthesized flag) and the effect is guaranteed (according to
the preconditions).

C. Properties

Safety and permissiveness properties are modeled in CTL
(Computational Tree Logic), a branching time logic fully
supported by NuSMV. Time along paths is modeled by three
operators: X for a property to hold in the next state, G to hold
on the entire path, F to hold eventually. The branching aspect
is modeled by A, all the branches, and E, there exists a branch.
A CTL operator is composed of one branching operator and
one time operator. It is applied on states, or more generally
on statements about the system state.

Safety is predefined as the unreachability of the catastrophic
states declared by the user, i.e., in CTL, AG ¬ cata.

Permissiveness is modeled by two reachability properties
applied to any non-catastrophic state snc:
• SIMPLE REACHABILITY: EF snc

The state snc is reachable from the initial state.
• UNIVERSAL REACHABILITY: AG EF snc

The state snc is reachable from any reachable state.
For safety, we pessimistically consider that several inde-

pendent variables may change their values simultaneously. We
call such simultaneous modifications diagonal transitions by
reference to the two variable case (see Fig. 3, transition from
initial state to s1). Relying on those possible but unlikely
transitions to ensure permissiveness is not desirable as it would
be too optimistic. A more complete definition of reachability
properties that ignore diagonal transitions during permissive-
ness checking is provided in [3] and used by the tools we
developed.

The SMOF template has a LiveProp module defining the
simple and universal reachability of an arbitrary state. A tool

Concepts User tasks NuSMVTemplate

Behavior

Continuity() VAR, TRANS

Dependence

cata

TRANS, INVAR

Intervention Intervention Intervention() VAR, TRANS

Permissiveness

Validity

Safety

LiveProp()

INVARSPEC

CTLSPEC

CTLSPEC

Safety 
invariant DEFINE

Partitions

Fig. 7. Concepts and implementation of the SMOF model

automatically instantiates it for each non-catastrophic state of
the behavior model entered by the user. By default, universal
reachability is required, but the user can edit a script to
change the permissiveness requirements of some states. When
the strategy synthesis returns no solution for the stringent
requirements, it may be a good compromise to accept the
simple reachability, or even the unreachability, of states that
are not essential to the robot functionality.

D. Summary

The NuSMV model of our running example is given in
Appendix A. This model is based on the SMOF template,
available at https://www.laas.fr/projects/smof. The template
includes predefined modules, parts to be edited by the user
and generated parts. To model the running example, the user
only needs to enter five lines, reproduced below, corresponding
to the declaration of the abstract variables, of the catastrophic
states and of the available interventions.

-- my var : Continuity(max,init)
v : Continuity(2,0);
a : Continuiy(1,0);
cata := v=2 & a=0;

-- myInterv : Intervention(precondState,
precondSeq, flag_myInterv, effect)

brake : Intervention(TRUE, v=0, flag_brake,
next(v)!=2);

lock_arm : Intervention(a=1, TRUE, flag_lock_arm,
next(a)!=0);

Fig. 7 links the SMOF concepts, the user tasks, the template
modules and the NuSMV syntactic elements. User tasks are
required only for specifying the behavior and interventions.
The properties are either predefined (safety) or generated
(validity and default permissiveness). As can be seen in
Appendix A, the tool also generates the list of warning states,
i.e., of states having a transition to a catastrophic state. It is
done in preparation for the synthesis of strategies: the warning
states are candidate states for applying interventions.

IV. SYNTHESIS OF STRATEGIES

The synthesis algorithm takes as inputs the behavior model
for an invariant, the available interventions and the properties
to ensure (validity, safety, permissiveness). It outputs a set of
alternative strategies, each of them satisfying the properties.
Conceptually, a strategy assigns a combination of interventions
to each warning state. Technically, this is encoded by the
definition of flags in the model. In the running example, the

https://www.laas.fr/projects/smof
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strategy applying brake in s1 and arm lock in s2 and s3 (see
Fig. 4) would be encoded as:

DEFINE flag_brake := flag_s1;
DEFINE flag_lock_arm := flag_s2 | flag_s3;

For a system with n warning states and m interventions,
the number of candidate strategies is 2mn (accounting for all
possible combinations of interventions in the warning states).
A naive algorithm could enumerate all the strategies, encode
them one by one in the model and call NuSMV to check for
the satisfaction of the properties. But such a brute force search
would be very inefficient. Rather, our algorithm builds a tree
of strategies, enabling us to prune branches during the search
(branch-and-bound algorithm). A formal description of the tree
and pruning criteria is presented hereafter.

A. Tree of strategies

Let I be the set of interventions, of size m, and IC = 2I the
set of intervention combinations. In the running example, I =
{a, b} and IC = {a, b, ab, ∅} (abbreviating the set notation).
Let Sw = {s1, . . . , sn} be the set of warning states of the
behavior, of size n. A strategy N is a function that maps each
warning state to a combination of interventions.

N : Sw → IC

It is defined by a set of pairs N = {(s1, i1), . . . , (sn, in)}.
We say N is a satisfying strategy if it satisfies the va-

lidity, safety and permissiveness properties. Furthermore, we
focus on minimal satisfying strategies, i.e., strategies from
which no intervention can be removed. A satisfying strategy
N = {(s1, i1), . . . , (sn, in)} is minimal if there does not exist
a different satisfying strategy N ′ = {(s1, i′1), . . . , (sn, i′n)}
such that ∀k ∈ [1, n], i′k ⊆ ik. For instance, let N1 =
{(s1, ab), (s2, b)} and N2 = {(s1, a), (s2, b)} be satisfying
strategies. N1 is not minimal due to the existence of N2.

We now introduce the undefined combination of interven-
tions noted ⊥, allowing us to consider partially defined strate-
gies N : Sw → IC ∪ {⊥}. The search for minimal satisfying
strategies can then be seen as the exploration of a tree rooted
by the undefined strategy N0 = {(s1,⊥), . . . , (sn,⊥)} (see
Fig. 8). Given a node N , building its children requires the
choice of a state s↓ in which the interventions are not yet
defined, i.e., N(s↓) = ⊥. If no such state exists, N is a fully
defined strategy and a tree leaf. Otherwise, the children of N ,
noted Ni, are the 2m nodes such as ∀s 6= s↓, Ni(s) = N(s)
and Ni(s↓) = i, with i ∈ IC .

As shown in Fig. 8, subtrees are pruned during the search.
Given the examination of a node N , the search may prune
all its child subtrees (which is visualized by a cross under
the node) and also some subtrees rooted by sibling nodes
(visualized by dotted lines). More precisely, the pruned sibling
nodes N ′ exhibit a specific relation with the current node N ,
that of being a combined sibling. Let N and N ′ be children
of Np after choosing s↓. N ′ is a combined sibling of N if
N ′(s↓) ⊂ N(s↓). For example, let us consider the children
of Np = {(s1, b), (s2,⊥), (s3,⊥)} after choosing s↓ = s2:
the node {(s1, b), (s2, ab), (s3,⊥)} is a combined sibling of
{(s1, b), (s2, a), (s3,⊥)}.

¬perm

¬p_safe

¬p_saf
e
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p_safe

¬safe¬safe

↓s =s3

¬valid

↓s =s1

{(s1,a),(s2,⊥),(s3,⊥)} {(s1,b),(s2,⊥),(s3,⊥)}

↓s =s2

{(s1,∅),(s2,⊥),(s3,⊥)}

{(s1,b),(s2,a),(s3,⊥)}

{(s1,⊥),(s2,⊥),(s3,⊥)}
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{(s1,b),(s2,a),(s3,b)} {(s1,b),(s2,a),(s3, ∅)}{(s1,b),(s2,a),(s3,ab)}{(s1,b),(s2,a),(s3,a)}

Fig. 8. Examplary search tree. The chosen state s↓ is framed under the
parent node. A cross indicates the pruning of all child subtrees, and dotted
lines indicate the pruning of combined siblings. Nodes are labelled by the
property determining the pruning.

The decision to prune subtrees depends on the properties
satisfied by N . The strategy is thus encoded and model-
checked. The encoding interprets the undefined interventions
⊥ as no intervention in the state. At the end of the tree
exploration, the search returns all visited leaf nodes found to
be satisfying strategies. In Fig. 8, the search would return a
single strategy: the leftmost bottom node labeled sat.

B. Pruning criteria

Table I gives an overview of the pruning criteria.
The first criterion applies to a strategy N that is !valid.

For instance, in Fig. 8, strategy {(s1, a), (s2,⊥), (s3,⊥)} is
!valid because the intervention that locks the arm folded is
applied in a warning state where the arm is unfolded. Child
strategies of N define interventions in other warning states, but
this will not fix the problem in the first one. Either the first
warning state becomes unreachable, and so the child strategy is
not permissive, or the state is reachable and the child strategy
remains invalid. So, the children of an invalid strategy are
either invalid or not permissive. Similarly, a combined sibling
of N defines additional interventions in the same warning
state, and the first intervention still makes the strategy invalid.
Recursively none of the children of the combined siblings are
solutions to the problem, we can prune the subtrees of the
combined siblings.

Consider now a partial strategy that is not permissive. All its
children are !perm as well, because adding interventions can
only cut transitions. In the same way, its combined siblings
are !perm. The second criterion prunes descendants and
combined siblings of non-permissive strategies.

The third criterion detects partial strategies that cannot result
in safe leaf strategies. It is evaluated using a subgraph of the
behavior, where the warning states with undefined (⊥) inter-
ventions are removed. For example, in Fig. 9, the subgraph
does not contain s2 and s3. The safety analysis focuses on
reaching the catastrophic state via the warning states for which
the interventions have been decided. If the strategy is safe
in this subgraph we say that it is partially safe (p_safe).
For example, the strategy of Fig. 9 is p_safe thanks to the
effect of intervention b applied in s1. Now, suppose a strategy
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is not p_safe. The defined interventions fail to remove all
catastrophic paths in the subgraph. The descendants of the
strategy will not remove these paths. They can only delete
transitions from warning states that are currently outside the
subgraph. So, all descendants are unsafe and can be pruned.

The usefulness of this criterion depends on how s↓ is chosen
at each step of the tree building. In Fig. 9, the target strategy
is a child of the root {(s1,⊥), . . . , (sn,⊥)}, after choosing
s↓ = s1. Suppose we had rather chosen s↓ = s3: any child
strategy would be trivally p_safe because s3 is unreachable
in subgraphs without s1 and s2. To avoid such cases, the
synthesis algorithm has a constraint on the s↓ chosen to build
the children of a node N . It must be such that N ′ is !p_safe,
with N ′ defined by:

N ′(s↓) = ∅ and ∀s 6= s↓ N ′(s) = N(s)

Under this constraint, the subgraphs are not trivially p_safe
and the pruning by the third criterion is more efficient.

The fourth criterion, sat, which includes safety, validity
and permissiveness, discards strategies that are not mini-
mal. Assume N is a satisfying strategy. Its descendants and
combined siblings might be sat as well, but they involve
additional interventions and are thus not minimal. The corre-
sponding subtrees can be pruned. N is appended to the list of
solutions returned by the search.

The fifth criterion discards the non minimal strategies that
are missed by the fourth one. For instance, in the tree of Fig. 8,
{(s1, b), (s2, a), (s3, a)} is a satisfying solution. The fourth
criterion prunes its sibling {(s1, b), (s2, a), (s3, ab)}, but not
the non-minimal “cousin” {(s1, b), (s2, ab), (s3, a)}. The fifth
criterion is able to prune it at the time of the intervention
decision for s2. It exploits the information that a current node
is p_safe, e.g., that {(s1, b), (s2, a), (s3,⊥)} is p_safe.
Intuitively, no other intervention is needed in the subgraph.
The criterion discards all combined siblings, like the sibling
assigning ab to s2 while a suffices.

Adding the fifth criterion ensures minimality of the returned
strategies but may remove solutions. As soon as interventions
have a PrecondSeq, their sufficiency for the subgraph does not
imply their sufficiency for the complete behavior. For example,
in Fig. 9, assume that intervention b is not effective if the
preceding state was s3: we may actually need an additional
intervention in s1 to account for paths via s3.

Our synthesis algorithm can be configured into two variants,
without or with the fifth criterion (see Table I). Variant 1
returns a superset of the set of minimal satisfying strategies. If
it returns no solution, then it is sure that no solution exists for
the model. If there are many solutions, this version is very
long to execute as it explores all of them, plus a number
of non-minimal ones. Variant 2 returns a subset of minimal
satisfying strategies. It is not conclusive regarding the absence
of solutions, but may return minimal strategies with a shorter
tree traversal than Variant 1.

C. Evaluation using artificial models

We have developed a parallelized implementation of the
synthesis tool. Its performance is assessed using artificial

TABLE I
PRUNING CRITERIA

Synthesis Node property Prune relative nodes

V2 V1

1 !valid Descendants and combined siblings
2 !perm Descendants and combined siblings
4 !p_safe Descendants
3 sat Descendants and combined siblings
5 p_safe Combined siblings

W

W

W

C

S

S

v=0&a=1 v=1&a=1

v=2&a=0

v=2&a=1

v=1&a=0v=0&a=0

s2 s3

s1 effect of b

Fig. 9. A view to check whether {(s1, b), (s2,⊥), (s3,⊥)} is p_safe. The
states and transitions in plain line constitute the considered subgraph.

models. It allows us to consider search spaces with more than
1018 strategies . The number of minimal solutions ranges from
zero to thousands.

The models, listed in Table II, are generated as follows. One
variable has 3 values, the others have 2 values. The initial state
has all variables at value 0, and the only catastrophic state
has variables at their maximum values. Each variable may
be controlled by two interventions: an action that decreases
the value of the variable, or an inhibition that freezes the
value. The models consider various combinations of variables
and interventions. For example, model 3var_3a has three
variables controlled by decreasing actions only (suffix _a).
Model 3var_3i has the variables controlled by freezing
inhibitions only (suffix _i). Model 3var_6 has all six
possible interventions. First, we did not consider sequential
preconditions, and then we introduced some. Performance is
assessed on a Intel Core I7-4770 processor running at 3.4GHz
with 16 GB of memory.

Table II presents the results for interventions with no se-
quential precondition. For each model, the number of complete
strategies (i.e., of tree leaves) is given. It would be the number
of steps of brute-force search. The two variants are assessed.
Their first column allows a comparison to brute-force search: it
gives the ratio of visited nodes (i.e., tree nodes) to the number
of complete strategies, expressed as a percentage. It could be
higher than 100%, since the tree nodes include both partial
and complete strategies. But the observed values are very
low, which demonstrates the overall efficiency of the pruning
criteria. The second column gives the number of solutions
found and the third column the execution time.

Since there is no sequential precondition, Variant 2 re-
turns the exact set of minimal solutions. Both variants agree
that models with actions only (suffix a) have no solution.
Intuitively, as the actions force the variables to change, no
permissive strategy can be found. For other models, Variant 1
keeps a large number of non-minimal solutions. The fourth
criterion does not suffice to catch them, the fifth criterion
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would be needed. As a result, Variant 1 explores a larger
proportion of nodes and takes significantly longer times than
Variant 2.

To check the undue removal of solutions by Variant 2, we
must add sequential preconditions. We made several attempts,
which we present briefly. We started by the following precon-
ditions: the interventions of the 3-valued variable are effective
only if the preceding state has this variable at 0. Synthesis
was rerun. A post-processing function analyzed the solutions
returned by Variant 1 to eliminate the non-minimal ones,
giving the exact number of minimal solutions. Variant 2 found
all of them in each case. We then strengthened the sequential
preconditions with inter-variable dependencies. In addition to
the previous conditions, the freezing intervention required one
of the 2-valued variables to be at 1 in the preceding state; the
decreasing intervention required the same variable to be at 0.
It allowed us to observe the removal of minimal solutions. For
example, for model 3var_6, there were 96 minimal solutions
and Variant 2 returned 64. It was never the case that a model
had solutions and Variant 2 returned none. We finally created
a specific model, with preconditions referring to precise states,
and managed to observe zero returned solution while there was
one to find.

From what precedes, the best approach is to favor Variant
2, and to refine the results by using Variant 1 only in cases
for which zero or few solutions are found.

Looking again at Table II, it may be surprising that the
synthesis fails for a model with four variables (for variant 1) or
takes half an hour (for variant 2). One might wonder whether
the approach is useful in realistic cases. Firstly, the number
of variables is not unrealistic. A safety invariant models only
one safety-relevant aspect of a system. In the real system
studied by [2], each invariant had no more than two variables.
Secondly, the artificial models we used are generic, i.e., they
have many interventions and no variable dependencies. It
induces that there may be numerous solutions to find, much
more than in real cases. This case is supported by the industrial
case study in the next section. The models typically had one
solution, and the longest synthesis time observed with Variant
1 was 0.32s.

V. ANALYSIS OF CONSISTENCY

Within our approach, each safety invariant is modeled sep-
arately and has a dedicated safety strategy. To check the effect
of merging the strategies retained for each invariant, the SMOF
models are turned into NuSMV modules and gathered in one
global model. A main module contains the glue information.

First, the variables from different SMOF models may be
dependent. The user has to add the dependencies, in the same
way as she entered them in SMOF models. A particular case
of dependency is to use the same observation in two SMOF
models. For example, consider an invariant of velocity limita-
tion and another invariant using the information of whether or
not the system is at stop. These invariants share a common
observation, velocity, but they have a different partition of
its values. The merging of the partitions follows a systematic
approach illustrated in Fig. 10.

Local partitions
SI2: velocity limitation

SI5: standstill

Global partition

0 1 2
0 1

0 1 2 3

Platform Velocity

Real  Values
(a) Principle: form a global partition based on the real values

INVAR pf_vel=0 <-> si4.pf_vel=0 & si2.pf_vel=0;
INVAR pf_vel=1 <-> si4.pf_vel=1 & si2.pf_vel=0;
INVAR pf_vel=2 <-> si4.pf_vel=1 & si2.pf_vel=1;
INVAR pf_vel=3 <-> si4.pf_vel=1 & si2.pf_vel=2;

(b) Formal encoding: declare a global variable and glue constraints

Fig. 10. Merging of two partitions of the platform velocity observation: for
velocity limitation (Invariant SI2) and standstill determination (SI5).

Second, the launching of interventions has an impact on
the whole system. Each time an intervention is asked by one
local strategy, it may have an effect in all the SMOF models in
which the intervention is modeled. The main module controls
this by means of a global flag, defined as the disjunction of
the local flags for this intervention. When the global flag is
true, the effect of the intervention is determined in each SMOF
model, under the local preconditions.

Analysis of consistency aims to check whether two strate-
gies, synthesized from different invariants, apply incompatible
interventions at the same time (e.g., braking and accelerating).
The model-checker easily detects roughly inconsistent cases
like both increasing and decreasing a variable. But there might
be less obvious cases not captured in the abstract models. So,
we require the user to specify the forbidden combinations.
Given a pair of incompatible interventions (i, j), their non-
concomitance is formulated as:

AG¬ ( globalF lagIntervi ∧ globalF lagIntervj)

Permissiveness is also re-checked. An intervention launched
by one SMOF model could impair the reachability of states
of other SMOF models.

VI. INDUSTRIAL CASE STUDY

To demonstrate our approach, we apply the whole process,
from HAZOP analysis down to implementation, to a case study
provided by KUKA Robotics.

The system is composed of a mobile platform and an
articulated arm with 7 axis (see Fig. 11). It is an industrial
co-worker in a manufacturing setting, sharing its workspace
with human workers. It takes and places boxes, which contain
parts, on shelves, tables, or on the top of the robot platform
in order to convey them. A restricted area is defined, i.e.,
an area forbidden to the robot. The robot arm can be hand-
guided when an operator needs to manipulate the gripped box
to inspect it. This interaction phase begins and ends with an
haptic gesture, a vertical push on the robot “elbow”.

The system is equipped with a safety layer satisfying most
of the implementation assumptions of our framework. In
particular, the programmable safety behavior associates inter-
ventions with conditions on observation variables. Classically,
only fixed thresholds are admitted to define the conditions.
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TABLE II
EXPERIMENTAL PRUNING PERFORMANCE

Number Variant 1 Variant 2
Model of Visited Solutions Time Visited Solutions Time

strategies nodes (%) nodes (%)
2var_2A 64 4.7 0 50ms 4.7 0 50ms
2var_2I 64 12.5 1 230ms 12.5 1 150ms
2var_4 4 096 0.56 9 210ms 0.44 6 170ms
3var_3A 106 10−3 0 200ms 10−4 0 200ms
3var_3I 106 10−2 40 3.1s 10−3 12 1.0s
3var_6 1012 10−6 17 106 4min 10−8 1 128 18.3s
4var_4A 1018 10−14 0 3s 10−14 0 2.7s
4var_4I 1018 - - - 10−11 12 954 26min

Fig. 11. The mobile manipulator of KUKA

TABLE III
SAFETY INVARIANTS, RESULTING FROM HAZOP-UML ANALYSIS

SI1 The velocity of robot arm must not be greater than V0.
SI2 The velocity of robot platform must not be greater than V1.
SI3 The robot must not enter the restricted area.
SI4 The robot platform must not collide with a human.
SI5 The robot arm must not be extended beyond the platform

footprint when the platform moves.
SI6 A gripped box must not be tilted more than α0.
SI7 A collision between a human and the robot arm must not hurt

the human.
SI8 The velocity of any point of the robot must not be greater

than V2.
SI9 The robot arm must not drop a box.

SI10 The robot arm must not clamp human parts.
SI11 The robot gripper must not clamp human parts.
SI12 The robot must not override boxes laid on tables, shelves and

robot storage.
SI13 The robot must follow the hand-guiding.

The monitor can observe a small subset of system variables
and has two possible interventions: engaging the arm brake
and engaging the platform brake.

A. HAZOP-UML

The system use cases have been modeled in 15 UML
sequence diagrams. The HAZOP analysis results in more than
hundred HAZOP lines with a non-zero severity. In practice,
it does not mean that hundred safety invariants need to be
modeled. There are many similar HAZOP lines that can
easily be grouped. The analysis ends up with thirteen safety
invariants listed in Table III.

B. SMOF models and synthesized strategies

In the following discussion, we put emphasis on how the
approach is impacted by the limited observation and interven-
tion means available to the safety layer. For this real system,
some invariants had straightforward models, some required the

v < V0-m
⋀ a = false

v ≥ V0
⋀ a = false

V0-m
≤ v < V0

W
CS

v < V0-m v≥V0

Fig. 12. Behavior of the SMOF model for SI1

elaboration of indirect observations derived from the direct
ones, and some were impossible to address, pointing to a lack
of observability or controllability.

1) Simple SMOF models: The first safety invariant, SI1, is
the limit of the arm velocity, formalized by v < V0. Defining
the velocity of a robot arm with 7 axis is not obvious. The
available observation v is the maximum translational Cartesian
velocity among the velocities of the axis center points. The
SMOF model is very simple, as there is only one observation,
which admits a margin (see Fig. 12). A unique strategy is
synthesized and, as expected, the arm brakes are engaged in
the margin state. Safety threshold V0 and margin value have
been calculated by KUKA engineers. The SMOF model for
the limit of the platform velocity (SI2) is similar.

2) Elaboration of indirect observations: SI3 states that
the system has to stay away from the restricted area. The
SMOF model uses one intervention, platform braking, and one
observation variable, the difference between the distance to the
restricted area (sensed) and the braking distance (computed
from the platform velocity). The variable is not a direct
observation but its computation from available observations is
simple enough to be done in the safety monitor. Similarly to
SI3, a collision between platform and human (SI4) is avoided
by observing the difference between the braking distance and
the distance to any obstacle (sensed by laser).

SI5 inspired our running example: The arm must not be
extended beyond the platform when the platform moves. In the
real system, the safety layer can observe whether all points of
the arm are inside a rectangular area defined by the user. The
area corresponding to the footprint of the platform gives us the
safety threshold: if any arm point is outside this area, the arm
is extended. To take a margin, we define an inner rectangular
workspace (see Fig. 13). The arm position can then be encoded
by three values, depending on the observations for the two
areas. Platform velocity is observed as a Boolean variable (0
for standstill, 1 for movement) with no margin.

For this invariant, both interventions are relevant. The
margin of the arm extension (i.e., the distance between the two
workspaces) is based on the braking distance of the arm. To
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Inner
work

space

Outer workspace

(a) Workspaces

XXXXXXXXOuter
Inner inside outside

inside 0 1
outside - 2

(b) Values of the observed arm position

Fig. 13. Observation of the arm extension.

ensure that the arm will not reach the outside of the platform,
the braking must be engaged as soon as the border of the inner
workspace is crossed. Hence, arm braking has a sequential
precondition (the preceding state is such that arm_pos=0).
The platform braking has no sequential precondition but a
state one. It prevents the platform from starting if applied in
a state where it is already standstill. Given the inertia of the
platform and the brake power, it is not possible for the initially
standstill platform to reach any significant velocity between the
time of the braking command and the time when brakes are
effectively engaged. Hence, the platform braking can be seen
as instantaneously effective, ensuring next(pf_vel)=0.

The synthesized strategy is to brake the platform when the
platform is standstill and the arm is close to or beyond the
footprint limit. The arm brake is engaged when the platform
is moving and the arm is in the margin.

3) Elaboration of hypothesized values: In some cases, the
state variables of interest cannot be derived from observations,
their value must be hypothesized based on the observations,
in a conservative way.

SI6: A box in the gripper must not be tilted too much.
The arm is able to pick boxes containing parts. As the boxes
have an open top, parts may fall if the box is too much
tilted. To formalize this invariant, the required observations
are 1) the presence of a box in the gripper; 2) the angles (or
the maximum absolute angle, denoted alpha) of the gripper
with respect to the Cartesian x and y axes. While alpha
is observable, the presence of a box is not. We make the
assumption that the gripper takes a box when the end-effector
is close to the robot storage and the gripper closes. (For sake
of simplicity, we only consider here the case of the robot
storage, and exclude the cases of tables and shelves). The
box is released when the gripper opens. Hence, our modeling
involves a hypothesized state variable, box, that is updated
according to the observation of the gripper status (open, close)
and the distance z to the storage from close (= 0) to far away
(= 2).

The safety property is first formulated as cata :=
alpha=2 & box=1, i.e., the gripper presumably carries a
box and the angle is above the safety threshold. The synthesis
returns no result. The monitor is indeed not able to prevent the
direct transition form the warning state alpha=2 & z=0 &
gripper=open & box=0 to cata. In this case, making
parts fall close to the robot storage is not very hazardous
because they fall from a low height. The new version of the
safety property is cata := alpha=2 & box=1 & z=2.

The synthesis returns one strategy that is to brake the arm
when a box is in the gripper, the end-effector is in the margin
distance or far from the robot storage, and the angle is greater
than the margin threshold.

Another example is SI7. The collision between the arm
and a human being is hypothesized via the arm velocity and
the external torque, computed from the torques sensed and
a physical model of the arm (mass and geometry, internal
torques from weight and intended acceleration). An adequate
strategy is synthesized.

4) Unsuccessful cases: Invariants SI8-13 were not ad-
dressed due to lack of observable variables or interventions.
For example, the vectorial sum of platform and arm velocities
is not observable (SI8). An intervention to lock the gripper
would be necessary to prevent box dropping (SI9). In many
observability issues, the relevant variables could have been
indirectly derived from existing observations, but in a way
that was deemed too complex: the derived information would
not be trustable enough to be used by the safety monitor.
A relevant example is the hand-guiding of the robot (SI13).
Checking whether the arm follows the intended movement
would be computationally expensive (accounting for the move-
ment and torques sensed on all axes) and untrustable. As
the interaction protocol begins and ends with haptic gestures,
the monitor could not even trustily determine that a hand-
guiding phase is ongoing. A solution would be to simplify
the protocol (e.g., by using a push button), and to replace
SI13 by a stringent limitation of arm velocity and acceleration
during hand-guiding. It would ensure that the robot is harmless
whether or not it correctly follows the guiding.

By providing feedback on the safety invariants that can or
cannot be ensured, our approach can help the designers to
modify the critical features of the system in the early stages.

C. Analysis of consistency

The SMOF models and strategies for SI1-7 are gathered in
one global model. The partitions of arm velocity (from SI1 and
SI7) and platform velocity (from SI2 and SI5) are merged as
exemplified by Fig. 10. The triggering of arm braking and
platform braking are synchronized: as soon as one SMOF
model triggers a brake, the main module triggers the same
brake in all SMOF models (with an effect that depends on
local preconditions).

The consistency analysis checks that incompatible inter-
ventions are not applied at the same time. In this system,
there are only two interventions and they are not incompatible.
We nevertheless checked their non-concomitance and NuSMV
returned a counterexample. But again, no issue is raised by
a concomitant application of arm and platform braking. The
global model also passed the permissiveness checks.

D. Implementation and tests

For demonstration purposes, we implemented and tested the
synthesized strategies on a KUKA robot.
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TABLE IV
DEFINITION OF TEST CASES AND RESULTS OF THEIR EXECUTION

Definition of test cases Executions Assessment
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Test verdict

0 Arm movement (above the inner workspace), then platform move-
ment.

Permissiveness No PASSYes

1 The controller tries to reach an arm velocity that is above the safety
threshold, with a normal acceleration.

SI1 No SI1 PASSYes
√

2 The controller tries to reach an arm velocity that is above the safety
threshold, with a high acceleration. SI1 No SI1 FAILYes

√
SI1

3 The controller tries to reach a platform velocity that is above the
safety threshold, with a normal acceleration. SI2 No SI2 PASSYes

√

4 The controller tries to reach a platform velocity that is above the
safety threshold, with a high acceleration. SI2 No SI2 FAILYes

√
SI2

5 The controller tries to reach the restricted area. SI3 No SI3 PASSYes
√

6 During the platform movement, the arm moves and goes outside the
platform footprint. SI5 No SI5 PASSYes

√ √

7 During the arm movement, the arm goes outside the footprint and
stops there. Then the platform moves. SI5 No SI5 PASSYes

√

8 During the platform movement, the arm moves above the inner
workspace.

Permissiveness
(SI5)

No PASSYes

9 The arm moves beyond the platform footprint, and comes back to
stop above the inner workspace. Then, the platform moves.

Permissiveness
(SI5)

No PASSYes
√

1) Experimental constraints: The experiments are done on
a real system in the environment of the KUKA laboratory.
As a consequence, experiments requiring collisions with a
human being are dangerous. We were not able to test the
strategies corresponding to the collision with the arm (SI7)
and the platform (SI4). Furthermore, the robot made available
to us had no gripper, making it impossible to implement the
strategy of SI6. Finally, we did not have programing access
to the safety layer. We had to implement the strategies in a
separate thread in the high-level Java interface of the system.
It does not provide us the same guarantees as the safety layer
would, in particular as regards real-time behavior.

2) Test cases: To test the strategies, we define a base case:
from an initial standstill position, the arm moves above the
inner workspace, stops, and then the platform moves. All other
test cases introduce a deviation from the base case that targets
a safety invariant. The first column of Table IV presents the
test cases and the associated test objectives.

When the objective is to test permissiveness, the behavior
of the robot controller is not dangerous and should not be
disturbed by the monitor. The base case serves this objective,
as do Cases 8 and 9. Case 8 checks that the arm is free to
move during platform movement, as long as it stays above the
inner workspace. Case 9 checks that the platform is free to
move after the arm is back to a safe position.

When the objective is to test safety, the behavior is danger-
ous and the monitor must avoid the violation of an invariant.
Cases 1-4 test a velocity too high, of the arm or the platform,
reached with normal or high acceleration. Case 5 moves the
platform into the forbidden area. Cases 6-7 let the platform
move with the arm in a dangerous position. Either the arm
unfolds as the platform moves (Case 6), or it is stopped at a
dangerous position before the platform moves (Case 7).

3) Results: Each case is tested twice, with and without
the monitor. Table IV reports the triggered interventions and
violated invariants. The safety of the runs is also controlled
visually by the operator. The final Pass or Fail verdict depends
on the test objective.

For permissiveness, a test case passes if the run without
the monitor is safe, and the other run with the monitor has a
similar behavior (similar execution time, similar final position
of the arm and the platform, no spurious intervention). Cases
0, 8, 9 all have a Pass verdict. For Case 9, note that the
platform braking is not a spurious intervention. It is applied
at the beginning of the run, when the arm is extended and the
platform should not move. But the braking is no longer active
when the platform really moves later in the run.

For safety, a test case passes if the execution is unsafe
without the monitor and becomes safe with it. Two of the
test cases fail, those checking velocity thresholds with a high
acceleration. The adequate intervention is triggered too late
to be effective: there is a transient threshold overrun before
velocity decreases. The problem is mainly due to experimental
constraints, since we were not allowed to use the real-time
safety layer. The margin values rely on the input sampling rates
and bounded intervention delays, but the Java implementation
does not ensure them. We repeated Cases 2 and 4 several
times and the real-time behavior varied. In one execution, the
monitor did not even observe the traversal of a warning state:
its inputs directly jumped from a value lower than the margin
threshold to a value greater than the safety threshold, following
a path that does not exist in the SMOF model.

These fail cases underline the criticality of the calculation
assumptions taken for margins. They concern not only the dy-
namics of the system (e.g., its maximal acceleration) but also
its data processing part. Indeed, no margin can be calculated
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if the processing has an unpredictable real-time behavior. In a
realistic setting, the monitor should be in the safety layer.

Putting aside the real-time issues of the Java-based imple-
mentation, the experimentation revealed no other problem. As
far as the strategies could be assessed given the experimental
constraints, they were found safe and permissive.

VII. RELATED WORK

In dependability community, fault tolerance defined by [1]
as the means to avoid service failures in the presence of faults,
is carried out with error detection and recovery mechanisms.
This approach has been used in robotics architecture, at
functional level [9] or decisional level [10], [11] for instance.
A popular form of fault tolerance dedicated to safety is safety
monitoring, through which the functional system is forced
to a safe state (recovery) should some hazardous behavior
be detected (error detection). Safety monitors appear in the
literature under many different terms, such as: safety kernel
[12], safety manager [13], autonomous safety system [14],
checker [15], guardian agent [16], safety bag [17], emergency
layer [18] or diverse monitor [6].

A quite similar approach can be found in the Runtime Ver-
ification community [19], where verification techniques (e.g.,
theorem proving or model checking) are used to check whether
a run of a system under scrutiny satisfies or violates a given
property. Most of the work deals with non independent layers,
focusing on code instrumentation, with dependency issues
between the safety layer and functional layer. Nevertheless, in
[20], [21], [22] the independence or isolation issue is tackled.

It is also important to mention supervisor synthesis devel-
oped by [23], which is focusing on delivering a correct-by-
construction controller. Using our terminology, it is actually a
way of integrating in the functional controller only inhibitions
to remove unwanted transitions (and not actions). Conceptu-
ally similar to supervisor synthesis, the work in [24], presents
a synthesized robot controller integrating properties. Again, no
rules identification process is proposed, authors focus on the
verification mechanism. This approach is also based on the
knowledge of the functional controller behavior, which is not
the case in this paper.

Even if those latter works can be extended to the devel-
opment of dedicated safety layers, no process for safety rule
production is studied. Most of the work focuses on language
theory issues. We also study and integrate in our framework
the necessary compromise between, safety and permissiveness,
which is not addressed in the previous papers. Among previous
cited safety monitors, a close work presented by [15], proposes
to add a layer in an autonomous robot controller software to
detect and recover from deviations between requests from the
decisional layer and observations coming from the functional
layer. But most of the work was to create a generic mechanism
to produce code for the execution layer, and not to provide a
tool for the identification of the properties to check. [25] pro-
pose to guarantee safety using several hardware and software
redundancies, but no systematic approach is proposed.

For the safety rule identification process, [26] present a
very similar workflow to ours. They use HAZOP to identify

hazards and determine (intuitively) the corresponding safety
rules, which are if-then-else rules. From sensor observations,
the monitor (safety layer) sends actuation inhibitions to both
the controller and the software actuator interface. The main
point of the method is to take into account sensor uncertainty.
Compared to our approach, permissiveness is implicit and the
monitor is actually dependent from the functional layer. The
safety rules consistency issue is mentioned in [27] and [28],
but again, a systematic process is actually out of the scope of
these works.

VIII. CONCLUSION

Active safety monitors for autonomous systems have to deal
with complex safety rules, inducing several interventions that
should be consistent. To develop such active monitors, we
proposed a formalized process based on the definition of warn-
ing states linked to a safety margin. In these warning states
it is possible to trigger interventions before the system goes
in catastrophic states. We proposed a complete framework,
SMOF, starting from hazard analysis and ending in safety rules
synthesis. In this paper, we particularly focus on the safety rule
generation algorithm, and on its validation on a real industrial
case study.

A major benefit of SMOF is that it provides a systematic and
formal approach for the expression of safety rules, whereas it
is usually done ad hoc, based on the expertise of the analysts
only. The models are also of great importance to describe
the monitor behavior in order to take it into account for the
development of the functional layer. Indeed, safety margins
and interventions need to be non-ambiguous to determine
controller reactions. Our approach is based on the use of
a well-known formal language (CTL), and we proposed a
template available online to simplify the use of our tool.
Most of the complex verifications (like permissiveness) are
automatically generated and checked. More precisely, for the
selection of intervention, we propose to take into account the
warning state where the system is, but also the path followed
to reach this state. A last notable result is that after application
on a real use case, there is no combinatorial explosion of the
algorithm, and its performance is acceptable.

A main limitation of using our approach lies in the ex-
pression of dependencies or partitions of observable variables.
Indeed, the efficiency of the generation could be highly
increased when the analyst has a good level of expertise
on interrelations between variables. Another drawback is that
the current version of SMOF does not include a mechanism
to activate/deactivate the safety rules depending on the task
performed by the system. In most of autonomous applications,
this would represent an important issue as systems tend to
be more and more versatile. The proposed approach is also
limited to the functional level, with simple expression of the
safety invariant using propositional logic. For now, we do not
consider interventions like blocking requests from decisional
layer.

Future directions concern the extension of the framework
to the definition of a several warning regions, in order to trig
interventions with different levels of efficiency. For instance,
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a soft intervention might reduce the speed, and if needed a
second hard intervention could activate emergency stop. This
approach is also linked to the implementation on different
layers (hardware and software) with different integrity levels.
We also plan to extend SMOF to the observation of the
decisional layer (e.g., task or trajectory plans), and possible
intervention as rejecting requests from the decisional layer.
Finally, the SMOF is about to be transferred to the industry in
the context of the European CPSE Lab project (Cyber-Physical
Systems Engineering Labs).

ACKNOWLEDGMENT

The authors would like to thank Tim Guhl, Steffen Walther
and Vito Magnanimo, employees of KUKA and partners of
SAPHARI. This work is partially supported by the two projects
funded by European Union: SAPHARI (7th Framework Pro-
gramme) and CPSE-Labs (Horizon2020 Programme).

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] A. Mekki-Mokhtar, J.-P. Blanquart, J. Guiochet, D. Powell, and M. Roy,
“Safety trigger conditions for critical autonomous systems,” in PRDC.
IEEE, 2012, pp. 61–69.
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APPENDIX A
SIMPLIFIED SMOF MODEL OF THE RUNNING EXAMPLE

This appendix presents a simplified version of the SMOF
model. We have omitted module definitions and side variables
that manage the interactive exploration and the diagonal tran-
sitions for the permissiveness properties.

MODULE main

-- Define state variables
-- my_var : Continuity(upper_bound, init_cond);
VAR
-- Platform velocity. 0: < V0-m, 1:margin, 2: > V0
v : Continuity(2,0);
-- Arm position. 0:unfolded, 1:folded
a : Continuity(1,1);

-- If any, model variable dependencies with TRANS
and INVAR

-- Specify cata with state variables
DEFINE cata:= v=2 & a=0;
-- Safety property
INVARSPEC NAME safe := mode=eval -> !cata;
-- No recovery from a cata state
TRANS cata -> next(cata)=TRUE

-- Model interventions
-- interv : Interv(precond, precond_seq, flag,

effect);
VAR
brake : Intervention(TRUE, v=0, flag_brake, next(v

)!=2);
lock_arm : Intervention(a=1, TRUE, flag_lock_arm,

next(a)!=0);

http://dx.doi.org/10.1109/HASE.2015.15
https://www.laas.fr/projects/smof
https://www.laas.fr/projects/smof
http://www.cs.indiana.edu/~lepike/pubs/survey.pdf
http://www.cs.indiana.edu/~lepike/pubs/survey.pdf
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---------------
-- GENERATED --
---------------

-- Validity property
INVARSPEC NAME valid := (!flag_brake | brake.

__pre_c) & (!flag_lock_arm | lock_arm.__pre_c)

-- Permissiveness property. LiveProp is
instanciated for each non-catastrophic state

VAR
live_0 : LiveProp(v=1 & a=0, cata);
live_2 : LiveProp(v=0 & a=1, cata);
live_3 : LiveProp(v=1 & a=1, cata);
live_4 : LiveProp(v=2 & a=1, cata);
live_5 : LiveProp(v=0 & a=0, cata);

------ Warning states
DEFINE flag_st1 := a=0 & v=1;
DEFINE flag_st2 := a=1 & v=1;
DEFINE flag_st3 := a=1 & v=2;

APPENDIX B
MODULE INTERVENTION

This NuSMV generic module for Intervention is called by
the previous model and specifies the intervention in terms of
precondition, sequential precondition, condition and effect.

MODULE Intervention(precond_st, precond_seq, cond,
effect, mode)

-- precond_st = without next(), written from the
application state

-- precond_seq = with or without next(), written
from the step before application (the next
step of this expr corresponds to step where
the intervention is applied).

-- cond = condition of application. Without next.
Must be set to "flag_intervname"

-- effect = with next(), written from the state
of application

VAR applied : boolean;
ASSIGN
init(applied):=FALSE;
next(applied):=case

applied=FALSE & precond_seq & next(cond &
precond_st) : TRUE;

applied=TRUE
& next(cond & precond_st) : TRUE;

TRUE : FALSE;
esac;

TRANS applied -> effect

-- For validity property
DEFINE __pre_c := precond;
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