
  June 2016 

1 

A Process for Evaluating Parametric Models 

for Mechanical Systems Simulation : the Case of a Sailboat 

 

Emilien Lavigne, MerConcept, emilienlavigne@merconcept.com 

Benoît Piquemal, MerConcept, benoitpiquemal@merconcept.com 

Adeline Bourdon Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR 5259 F-69621 Villeurbanne France, 

adeline.bourdon@insa-lyon.fr 

Simon Chesne, Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR 5259 F-69621 Villeurbanne France,  

simon.chesne@insa-lyon.fr 

Goulven Guillou, Lab-STICC/UBO, goulven.guillou@univ-brest.fr 

Jean-Philippe Babau, Lab-STICC/UBO, babau@univ-brest.fr  

 

 

Introduction 

Due to the emergence of modern sensors and embedded computation capacity, more and more 

Cyber Physical Systems (CPS) are developed. Into a CPS, the controller (the Cyber part) has to 

consider various situations (imposed by the Physical System and its environment). The CPS 

development requires large simulations in order to ensure safety and efficiency of the controlled 

physical system. Realism is a key challenge to make the simulation pertinent. Realistic 

simulation requires dedicated models to emulate different behaviors of the controlled system 

and its environment. 

The targeted application domain of this paper is racing sailboat. A racing sailboat is a complex 

mechanical prototype, constantly evolving. So, defining realistic physical models is 

complicated, and sometimes impossible. Moreover the behavior of a sailboat depends on the 

environmental conditions strongly. But because of the intrinsic unpredictability of the marine 

environment, the environmental conditions are also difficult to evaluate and characterize, and 

so the behavior of the sailboat remains unknown. 

In the other hand, due to an intensive usage of sensors, it is possible to get a large amount of 

data describing the behavior of the system. So, for the targeted domain, an interesting 

alternative to model the physical system is the use of parametric models. A parametric model 

is able to mimic an observed behavior of a system by analyzing measured input and output of 

the system.  

In this paper, we propose to study parametric models to simulate a racing sailboat. We first 

investigate the choice of an adapted parametric model (autoregressive or state-based). Then we 

discuss the impact of the data reference (absolute or relative) and of the time discretization. 

What is the influence of the number of measured data on the parametric model accuracy? 

The following section gives the main principles of parametric models and the main sailboat 

characteristics. Then the approach is presented before to be evaluated on data measured on a 

racing sailboat. The last section concludes the paper and gives some perspectives.  

Background and Case Study 

Parametric models 

A parametric model is a mathematical model which describes the behavior of a system by using 

a finite number of parameters. Such a model is able to compute one or more outputs, by 

considering one or more inputs. In this paper, we use two families of MIMO models [1]: the 

state-space models and the autoregressive models. The first one is based on a set of state 
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variables, contained in a state vector which represents the system. In case of linear systems, the 

behavior can be modeled by four matrices (input, output, state and feedthrough matrices), 

characterized by a set of coefficients (the parameters of the model). The second family is based 

on a set of transfer-functions, a function describing the contribution of one input on one output. 

The parameters of the model are the coefficients of the transfer-functions. In both cases, models 

have an order: it corresponds to the order of the transfer function for the autoregressive 

approach, and to the length of the state vector for the state-space approach. 

The identification of parameters requires a set of input and output data, measured on the real 

system: the parametric model is computed to mimic the observed behavior of the system.  The 

parameters are determined by minimizing the gap between the measured outputs and those 

obtained by simulating the parametric model. 

Sailboat 

In this paper, we apply parametric model to sailboat modeling. When sails are trimmed, a 

sailboat reacts to its environment (wind and sea) and to a direction controller. The control law 

aims to regulate the course of the sailboat, in order to steer it along a fixed heading. In this case, 

the command delivered by the controller is the rudder angle. For environment, in this work, as 

a first approach, we assume that only the wind has an influence on the sailboat. Sea is supposed 

flat with limited waves and without current. Depending on the inputs (wind and rudder angle), 

the behavior of the sailboat determines the outputs: here the speed, the yaw (the direction), and 

then the position and the trajectory of the sailboat. 

These different inputs and outputs can be obtained thanks to different sensors embedded on the 

sailboat, here a racing multihull sailboat. 

Among the input data, the wind can be described by apparent or true wind. The apparent wind 

is the wind felt by an observer on the sailboat and is a relative wind. The true wind is the wind 

felt by an immobile observer. Apparent and true wind are usually described through a polar 

notation which gives the speed (AWS and TWS respectively for Apparent Wind Speed and 

True Wind Speed) and the angle (AWA and TWA respectively for Apparent Wind Angle and 

True Wind Angle) of the wind relative to the bow axis of the sailboat. However a Cartesian 

conversion is always possible and very useful in some cases. 

For outputs, a fast GPS (10Hz) provides the geographical position and the Speed Over Ground 

(SOG) (a classical speedometer does not work on a racing multihull as the hulls are regularly 

above the sea surface) and the Course Over Ground (COG). These data also allows evaluating 

the True Wind Direction (TWD) which is a geographical direction. 

Apparent wind data is measured at the masthead of the sailboat. And true wind is obtained by 

subtracting the sailboat speed vector (SOG) to the apparent wind. 

Controlled process modeling 

In this section, we present how to model a controlled system by reusing real input and output 

data. 

Global system 

First, we present the global model of the system. As usual in control, it is divided in three main 

parts (colored rectangles surrounded by dotted rectangles in fig. 1): the controlled system, the 

controller and the environment. The environment is connected with both the controlled system 

and the controller: the environment impacts the behavior of the system and the controller uses 
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some environment measures to perform adequate commands. At the end, the controller acts on 

the system to apply specific commands. 

 

Figure 1 – A generic decomposition of control system 

Control may be based on an absolute reference (point of view of an immobile observer 

compared to the ground), or on a relative reference (the referential of the system itself). In the 

latter, environmental conditions are viewed relatively to the system, whereas in the first case, 

there are described in the absolute referential. Consequently, we add a “Referential adapter” to 

adapt input data to the chosen reference. 

To evaluate properties of the control (safety, performance …), it is fundamental to simulate 

each part of the system by proposing adequate models. The choice of models for each part of 

the system is a key challenge of CPS simulation. 

In the targeted domain, the environment is disturbed, uncertain and unpredictable. A model of 

environment is then difficult to explicit. For example, up to now, high frequency (more than 1 

Hz) wind model are not realistic enough. Most existing models are climatic models or models 

related to energy production [2, 3]. 

The controller is also difficult to model. In the targeted domain, autopilots are based on 

industrial and confidential policies. And in case of human control, especially for racing 

sailboats, it is difficult to exhibit the control law followed by the skipper, often acting 

instinctively [4]. 

It is also complicated to simulate the controlled system dynamic which depends on many 

parameters, often unknown for racing prototypes (the domain of the paper). The intensive 

calculus (like finite elements or CFD simulation) gives a first approximation. In real, the 

equations of the motion do not accept trivial or analytic solutions. 

Because a priori models are difficult to obtain, the main idea of this work is to simulate the 

dynamic of the controlled system by using parametric models, instead of solving the equations 

of motion. Once the parametric model is determined, its main interest is to allow predicting the 

behavior of the controlled system with very light calculus. 

As noted above, it is necessary to have datalog to determine the coefficients of the parametric 

model, and the data must be sufficiently representative to contain the system’s entire dynamic.  

Controlled system modeling 

In this study, we consider only linear parametric models, which are easier to determine and 

faster to calculate. However, in many physical systems, the response to output data is not linear, 

but rather quadratic or polynomial. To overpass those nonlinearities, it is possible to introduce 

additional inputs, with derived data as their squares or their cubes. 
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Two families of parametric models are available to simulate MIMO systems. At first sight it is 

difficult to determine which one is the best: an autoregressive model is relevant to obtain each 

contribution of each input for one given output, and a state-space model is more accurate if 

those contributions are coupled. Moreover the system can be simulated with two different 

references (absolute or relative). Physically, the two methods are strictly equivalent 

(particularly if the system is a linear system), but the accuracy of a parametric model, which 

involves numerical computation, might change with those different approaches. 

If we combine the choice of the model’s family and the choice of the reference, we get four 

possibilities that give four potential models for the controlled system. An hybrid solution may 

be also considered, where some outputs are computed with a kind of model and the others with 

another. Moreover, if the outputs of the first model are used as the inputs of the second, it leads 

to a large number of possibilities. At the end, there is a necessity to find a criterion to evaluate 

the performance of each model. A classical criterion is the norm between the simulated and 

measured data, for a given output. It estimates the gap between the real behavior of the system 

and the one predicted by the model with the same input data. 

To compare different model candidates, it is important to determine a representative set of data 

(inputs and outputs) which allows characterizing the behavior of the system in different 

conditions. The classical approach in identification theory [5] is to split the set of data in two 

parts: the first one is used to compute the coefficients of the model, and the second one is used 

to evaluate the performance of the model, by comparing the simulated and the measured 

outputs. However, in the case of uncertain environment, during a given time period, the 

conditions can evolve and the computed model, which is valid for a certain period, is wrong 

elsewhere. To avoid this problem, instead of splitting the data in two equal parts, it is interesting 

to consider different periods of time for which the behavior of the system is similar for 

computation and validation. However, the duration of these periods must be sufficient for 

capturing all the dynamic of the system.  

Sailboat modeling 

For a sailboat control, the global architecture of the system is given by figure 2. The system is 

the sailboat itself, and the controller is the autopilot. As the sea is here considered as neutral, 

only wind provides environmental conditions, and the referential adaptor is a simple vector 

calculus to get the apparent wind (AWS and AWA) from the real wind (TWS and TWD) and 

the sailboat velocity (SOG and COG). 

 

Figure 2 – The architecture of the sailboat control system 
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For experiments, we have chosen the Matlab language and toolbox [6]. Thanks to the Matlab 

identification toolbox, parameters of a model can be computed from a given data set. And the 

toolbox proposes an option to select the auto-computation of the best model order for a given 

situation. 

Inputs and Outputs 

The data set used for this work is a time series of 5000 points. The sample time is 1 second. 

The set corresponds to 1h23’ of navigation. The figure 3 presents the characteristics of the 

logged true wind (speed and direction). The sailboat’s sensors can only measure the apparent 

wind. Data presented in figure 3 have been reconstructed in real time by the sailboat computer. 

 

Figure 3 - Real wind of the data set 

 

Even if the goal of a parametric model is to ignore the physical meaning of the coefficients, it 

is interesting to wonder what kind of equations can describe the simulated behavior, because it 

may give information for the order of the model, and the potential nonlinearities. For the case 

study, it can be assumed that the motion of the sailboat is govern by a classical second-order-

dynamic equation, but the effect of the wind is not linear: simplest models of fluid mechanics 

give the lift of the sail as a function of the squared speed of the wind. To keep a linear model, 

we add an input channel with the wind speed directly squared. 

For the case study with absolute referential, the inputs are TWS, TWS², TWD and Rudder angle. 

For those with relative referential, inputs are AWS, AWS², AWA and Rudder angle. In all cases, 

outputs are COG, SOG and Heel. 

Model choice 

We evaluate now which model can reproduce efficiently the behavior (here the motion) of the 

sailboat. Due to lack of space, we consider here only the four models generated by the two 

options: choice of a referential (absolute or relative) and choice of a model family (state-space 

or autoregressive). Hybrid and multi-model solutions are not discussed here. The characteristics 

of the four models we compare are listed below: 
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- A : absolute, state-space; 

- B : absolute, autoregressive; 

- C : relative, state-space; 

- D : relative, autoregressive; 

To compare performances of those four models, we propose two C1 and C2 criteria. C1 is the 

norm between the simulated and the measured output COG. This norm is given by the following 

equation in order to be independent from the length of the data set. 

𝐶1 = (1 −
‖𝐶𝑂𝐺𝑚−𝐶𝑂𝐺𝑠‖ 2

‖𝐶𝑂𝐺𝑚−𝑚𝑒𝑎𝑛(𝐶𝑂𝐺𝑚)‖2
) × 100 with COGm the measured COG and COGs the 

simulated one. A value of 100% indicate to identic signals. 

The second criterion C2 is the distance (in nautical mile) between the end of the simulated 

trajectory and the measured one. It evaluates the capacity of the model to give the correct 

trajectory. For each kind of models, the outputs are simulated for the full dataset, then the COG 

and SOG are integrates to get the simulated trajectory. Results are presented in figure 4. 

 

 

 

Model 

name 
C1 (%) C2 (NM) 

A 36.6 0.8261 

B 4.39 1.3089 

C -2.95 1.4157 

D -110 1.9528 

 
 

 

 

Figure 4 – Numerical criteria for comparison of models and simulated trajectories of the sailboat 

 

We can see that models based on the absolute reference are more accurate than those based on 

the relative one, for the two criterions. The superiority of the absolute reference is not really 

surprising: the racing multihulls are able to go faster than the wind, so the apparent wind is very 

dependent of accelerations and gyration of the sailboat. For family of models, the state-space 

model appears as better than the autoregressive one. In the following, we only consider model 

A, which appears as the best of the fourth for the considered data. 

Impact of window size 

The goal of this section is to determine if it is possible to increase the performance of a 

parametric model, by changing the size of subsets of data used to compute the model’s 

coefficients. In the previous section, the set is split in two equal parts of 2500 points each. First 

part is used to compute the model, and the second is used for validate it, mainly with the two 

criteria. We propose now to split the data set in n equal sets. If coefficients are computed on the 

pth set (p belongs to [1 ; n]), the n-1 other sets can be used to evaluate the model accuracy. 

Sweeping p for all values between 1 and n gives n*(n-1) combination of evaluation. 
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The evaluation has been done for the model A. For each situation, the C1 criterion is computed. 

C1 is chosen because it does not depend of the size of the data set, contrary to C2. The figure 5 

presents the results using box plots, one for each value of n between 2 and 7. 

 

Figure 5 – C1 criterion for different values of n 

 

The figure shows two interesting values of n providing better results: 2 and 4. For both, the 

mean is high, so does the first decile. Results for n = 4 are quite particular: the majority of 

results are pretty good, and only a few values are really bad. It can be explained by analyzing 

the measured wind. We may observe two different regimes on the wind speed: during the first 

1300 points, the speed regularly increases from 17 to 21 knots, and then it oscillates around 21 

knots, with average amplitude of 2 knots. The direction graph presents the same trend: a strong 

variation of 35° in the first period, and then an oscillation around 280°. The first 1300 seconds 

(nearly the first quarter of the set) contains a different regime of wind. The model computed 

with this first quarter is bad to predict the behavior of the sailboat in the other regime, whereas 

models calculated with the three other quarters are quite good to predict the behavior in the 

three last quarters. This explains the presence of few bad values among very good ones. 

On the other hand, the results for n = 2 are good too, even if the low dispersion is explained by 

the number of elements in the series (only 2). The detailed values contains interesting 

information : the C1 criterion is 37.1 for the model computed in the first part and evaluated in 

the second one, and it is only 20.9 for the model computed in the second part and evaluated in 

the first one. This difference can be interpreted because of the presence of different regimes: 

the first part contains the two different wind regimes, so the model computed on it can “catch” 

the behavior of the sailboat on both, and it can simulate the behavior on the second set of data, 

which contains the second regime. Conversely, the model computed with the second part of 

data only catches the behavior of the sailboat in the second regime. That’s why it is worse to 

simulate this behavior during the first regime at the beginning of the first part. 

To conclude on the influence of time discretization, a time period containing a very particular 

regime is powerful to emulate only similar regimes, whereas a large period, containing different 

regimes, leads to a more polyvalent model, maybe less accurate. The discretization work 

consists then in finding a trade-off between number of splits and model accuracy. 
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Related works 

As mentioned in [7], Cyber-Physical Systems (CPS) present several issues in term of design, 

performance and quality of service. There are numerous challenges in CPS design, in term of 

architecture modeling, simulation, tooling, frameworks, and validation. This paper addresses 

the challenge about realistic simulation.  

About simulation, we share with [8] the idea that the dynamic of CPS evolves very fast, and 

design of CPS requires handling the complexities posed by temporal variations and designing 

situation-specific control actions. 

In [9], the author proposes a technique for translating the analytical dynamics of a physical 

system, and especially mechanical ones, into running simulation codes. The approach is 

interesting because the gap between analytical modeling and the simulators can significantly, 

impedes the development of CPS. In our paper, this problem is solved differently: parametric 

models are computed only by identification, so the CPS can be simulated without any analytical 

model, and the parametric model can be integrated directly into simulation tools. The gap with 

real system may be reduced, but on the other hand the parametric model does not embed 

physical meaning. 

In [4] the author proposes a multi-agent architecture for modeling and implementing a safe and 

efficient autopilot. For tuning the controller, a virtual environment has been built simulating 

sea, wind and sailboat. The user may trim the virtual sails, define different weather scenarios 

(sea state and wind), and clone the sailboat in order to compare two different pilots and finally 

evaluate which is the best. The sailboat model is based on classical mechanics equations but for 

efficiency reasons the model is quite basic and doesn't capture all the dynamic of the sailboat. 

Therefore the behavior of the virtual sailboat doesn't match with a real one and makes difficult 

the evaluation of the autopilot. 

Most of the key challenges of this paper are shared with the author of [10], whose goal is to 

simulate the behavior of an IACC mono-hull. [10] aims at the development of a physical 

simulator for sailors training. The simulated behavior should be as close as possible as the real 

one. [10] proposes to use a combination of analytical models for the dynamic, resulting from 

computational fluid dynamics (CFD) and wind tunnel experiment, and real scale experiments. 

Some identifications methods are used during these large scale experiments, but only to identify 

values of coefficients of the proposed analytical model of sailboat’s dynamic. Moreover, some 

specific sailing navigation has been done especially for the identification. The parametrical 

models discussed in this paper may be less accurate than the one exposed in [10]. But they do 

not need heavy CFD calculus, and they can be computed from data recorded on a “classical” 

navigation, without monopolizing the sailboat for a measurements campaign. 

Conclusion 

This paper proposes an approach to set up a parametric model for a racing sailboat. Experiments 

on a representative set of data shows the interest of considering an absolute reference and a 

state-space model. The time discretization is interesting to capture specific behaviors but 

presents some limits to cover multiple regimes of a system. 

We are now working on hybrid modeling (autoregressive and state-space) and on automating 

parametric model evaluation and its initialization. We are also considering more and more data 

(new data like the sea state and new measurement campaign) to improve the obtained models. 
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