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Impossible to precompute a plan for each possible situation.

Service robots need to plan and manage their actions online!

▶

▶
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Online Planning & Execution
Triggers replanning to adapt the plan during execution.

1. M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated planning and acting: A position paper”, Artificial Intelligence, vol. 208, pp. 1–17, 2014.
2. S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency maneuver library-ensuring safe navigation in partially known environments”, in ICRA, 2015.
3. D. Kortenkamp and R. Simmons, “Robotic systems architectures and programming”, in Springer Handbook of Robotics, 2008.
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Online Planning & Execution
Triggers replanning to adapt the plan during execution.

Planning & Execution Strategy

The way of interleaving the planning, selection and execution of actions.

When to call which deliberative function, with which parameters.1▶

1. M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated planning and acting: A position paper”, Artificial Intelligence, vol. 208, pp. 1–17, 2014.
2. S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency maneuver library-ensuring safe navigation in partially known environments”, in ICRA, 2015.
3. D. Kortenkamp and R. Simmons, “Robotic systems architectures and programming”, in Springer Handbook of Robotics, 2008.
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Online Planning & Execution
Triggers replanning to adapt the plan during execution.

Planning & Execution Strategy

The way of interleaving the planning, selection and execution of actions.

Default Behavior

To ensure the integrity of the system and/or its environment when no valid plan is available.

When to call which deliberative function, with which parameters.1▶

Such default behavior can be precomputed or obtained by fast (sub-optimal) planning.2▶
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Online Planning & Execution
Triggers replanning to adapt the plan during execution.

Planning & Execution Strategy

The way of interleaving the planning, selection and execution of actions.

Default Behavior

To ensure the integrity of the system and/or its environment when no valid plan is available.

Reactivity

The robot must be able to adapt its behavior fast enough when unexpected events occur.

When to call which deliberative function, with which parameters.1▶

Such default behavior can be precomputed or obtained by fast (sub-optimal) planning.2▶

Constraints on the so�ware architecture.3▶

1. M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated planning and acting: A position paper”, Artificial Intelligence, vol. 208, pp. 1–17, 2014.
2. S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency maneuver library-ensuring safe navigation in partially known environments”, in ICRA, 2015.
3. D. Kortenkamp and R. Simmons, “Robotic systems architectures and programming”, in Springer Handbook of Robotics, 2008.
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Two Existing Strategies
 

1. E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Konolige, “The Office Marathon: Robust navigation in an indoor office environment”, in ICRA 2010.
2. S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for probabilistic planning”, in ICAPS 2007.
3. J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and replanning in dynamic environments”, in ICRA 2006.
4. B. Marthi, “Robust navigation execution by planning in belief space”, in RSS 2012.
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Two Existing Strategies
 

Plan-Replan1,2

Only replans when strictly necessary.

Triggers replanning only when no valid plan is available 
(only when default behavior is executed).

▶
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Two Existing Strategies
 

Plan-Replan1,2

Only replans when strictly necessary.

Continuous Planning3,4

Tries to avoid the situation where no valid plan is available, by integrating observed changes.

Triggers replanning only when no valid plan is available 
(only when default behavior is executed).

▶

Triggers replanning continuously during execution, 
with the freshest information available, 
to continuously update the plan.

▶

1. E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Konolige, “The Office Marathon: Robust navigation in an indoor office environment”, in ICRA 2010.
2. S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for probabilistic planning”, in ICAPS 2007.
3. J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and replanning in dynamic environments”, in ICRA 2006.
4. B. Marthi, “Robust navigation execution by planning in belief space”, in RSS 2012.
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Continuous Proactive Planning with Multiple Hypotheses
Extends Continuous Planning with the following concepts:
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Continuous Proactive Planning with Multiple Hypotheses

Proactive Planning1

Anticipating situations by searching for
solutions in a proactive manner.

Generating multiple solution-plans by proactive
planning for multiple hypotheses (which can
correspond to predictable future situations).

1. E. Burns, J. Benton, W. Ruml, S. W. Yoon, and M. B. Do, “Anticipatory on-line planning,” in ICAPS 2012.
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correspond to predictable future situations).

Hypotheses

A collection of information in order to generate
a corresponding type of solution-plan.

Such as:
Constraints on the search space.
A particular configuration or initialization ...

Using One or Multiple Planners

Select the appropriate planner(s) to solve for
each hypothesis.

A planner can be more suited than another:
Ability to deal with uncertainties.
Solving duration.
Optimality guarentees ...

Solving a hypothesis with different planners to
obtain different plans for the same constraints.
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Continuous Proactive Planning with Multiple Hypotheses

Proactive Planning1

Anticipating situations by searching for
solutions in a proactive manner.

Generating multiple solution-plans by proactive
planning for multiple hypotheses (which can
correspond to predictable future situations).

Hypotheses

A collection of information in order to generate
a corresponding type of solution-plan.

Such as:
Constraints on the search space.
A particular configuration or initialization ...

Using One or Multiple Planners

Select the appropriate planner(s) to solve for
each hypothesis.

A planner can be more suited than another:
Ability to deal with uncertainties.
Solving duration.
Optimality guarentees ...

Solving a hypothesis with different planners to
obtain different plans for the same constraints.

Tackling (some) Uncertainties
with Multiple Hypotheses

Generate hypotheses on-the-fly taking into
account only appropriate uncertainties.

To speed up the search: 
take into account only a subset of the uncertainties.

To discard the need of modeling the uncertainties:
solve for possible future situations separately.

1. E. Burns, J. Benton, W. Ruml, S. W. Yoon, and M. B. Do, “Anticipatory on-line planning,” in ICAPS 2012.
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Continuous Proactive Planning with Multiple Hypotheses
High-level algorithm:

 
update context 

 
manage actions 

execute 
most 

appropriate 
action 

 
 

loop 
 update current goal, current state, planning results (if any) 

 if no action executing then 
  select most appropriate action to execute; launch selected action 
 else 
  verify if the executing action is still the most appropriate 
  if a more appropriate action is available then 
   stop the executing of current action; launch new most appropriate action; 
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Continuous Proactive Planning with Multiple Hypotheses
High-level algorithm:

 
update context 

 
manage actions 

execute 
most 

appropriate 
action 

 
 

manage planning 
plan 

for 
appropriate 

hypothesis 
with 

appropriate 
planner

loop 
 update current goal, current state, planning results (if any) 

 if no action executing then 
  select most appropriate action to execute; launch selected action 
 else 
  verify if the executing action is still the most appropriate 
  if a more appropriate action is available then 
   stop the executing of current action; launch new most appropriate action; 

 if currently planning then 
  if the hypothesis for which we are planning is still appropriate then 
   continue planning 
  else 
   stop the corresponding algorithm 
 if currently not planning then 
  if hypothesis le� to explore then 
   h ← select hypothesis to plan for; select planning algorithm for h 
   create planning algorithm input for h; launch the planner for h
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Tests – Autonomous Navigation in Dynamic Environments

Environments from grid-based path planning benchmarks1

1. N. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” Transactions on Computational Intelligence and AI in Games, 2012.
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Tests – Autonomous Navigation in Dynamic Environments

dao wc3maps rooms

mazes random (10% filled) random (40% filled)

Environments from grid-based path planning benchmarks1

1. N. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” Transactions on Computational Intelligence and AI in Games, 2012.
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Test Conditions

1. Peter E Hart, Nils J Nilsson, and Bertram Raphael, "A formal basis for the heuristic determination of minimum cost paths", Systems Science and Cybernetics 1968
.

2. S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in unknown terrain”, in ICRA 2002.
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Actions
8 "normal" actions
1 "default" action
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Test Conditions

Actions
8 "normal" actions
1 "default" action

Plans
Path of "normal" actions
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Test Conditions

Actions
8 "normal" actions
1 "default" action

Plans
Path of "normal" actions

2 Planners
A*1

D* Lite2

1. Peter E Hart, Nils J Nilsson, and Bertram Raphael, "A formal basis for the heuristic determination of minimum cost paths", Systems Science and Cybernetics 1968
.

2. S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in unknown terrain”, in ICRA 2002.
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Test Conditions

Actions
8 "normal" actions
1 "default" action

Plans
Path of "normal" actions

2 Planners
A*1

D* Lite2

Dynamic obstacles
Invalidating the followed path with probability ∈ {0.2, 0.5, 0.8}Pobstacle

1. Peter E Hart, Nils J Nilsson, and Bertram Raphael, "A formal basis for the heuristic determination of minimum cost paths", Systems Science and Cybernetics 1968
.

2. S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in unknown terrain”, in ICRA 2002.
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Test Conditions

Actions
8 "normal" actions
1 "default" action

Plans
Path of "normal" actions

2 Planners
A*1

D* Lite2

Dynamic obstacles
Invalidating the followed path with probability 

Minimum duration of the "default" actions: 2 cases
A: No minimum duration ⇒ The duration of a default action equals the (re)planning duration
B: Minimum duration of 0.5s

∈ {0.2, 0.5, 0.8}Pobstacle

1. Peter E Hart, Nils J Nilsson, and Bertram Raphael, "A formal basis for the heuristic determination of minimum cost paths", Systems Science and Cybernetics 1968
.

2. S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in unknown terrain”, in ICRA 2002.
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Types of Hypotheses

Global
Takes into account the complete

search space

Path Region
Limits the search space to a

region around a previous path

Sub-Path Region
Applies the path region

hypothesis to the first part of a
previous path.

Combines the new solution for
the first part, with the previous

path for the remaining part.
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Tested Instantiations
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11



Tested Instantiations
Plan-Replan

PR-A
1 global hypothesis / A* planner

PR-D
1 global hypothesis / D* Lite planner

Continuous Planning
CP-D

1 global hypothesis / D* Lite planner

11



Tested Instantiations
Plan-Replan

PR-A
1 global hypothesis / A* planner

PR-D
1 global hypothesis / D* Lite planner

Continuous Planning
CP-D

1 global hypothesis / D* Lite planner

Continuous Proactive Planning with Multiple (10) Hypotheses
CPP-1

1 global hypothesis / D* Lite planner
9 sub-path region hypotheses with different sub-goals / A* planner

CPP-2
1 global hypothesis / D* Lite planner
9 sub-path region hypotheses with different sub-goals + obstacle prediction / A* planner

CPP-3
1 global hypothesis / D* Lite planner
9 global hypotheses with obstacle prediction / D* Lite planner
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Test Results

A

B

Results for dao (similar for the first five environments)

Dynamic obstacles
Invalidating the followed path with probability 

Minimum duration of the "default" actions: 2 cases
A: No minimum duration ⇒ The duration of a default action equals the (re)planning duration
B: Minimum duration of 0.5s

= 0.2Pobstacle = 0.5Pobstacle = 0.8Pobstacle

∈ {0.2, 0.5, 0.8}Pobstacle
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Test Results

A

B

Results for random (40% filled) (sixth environment)

Dynamic obstacles
Invalidating the followed path with probability 

Minimum duration of the "default" actions: 2 cases
A: No minimum duration ⇒ The duration of a default action equals the (re)planning duration
B: Minimum duration of 0.5s

= 0.2Pobstacle = 0.5Pobstacle = 0.8Pobstacle

∈ {0.2, 0.5, 0.8}Pobstacle

14



Test Results

A

B

Results for random (40% filled) (sixth environment)
= 0.5Pobstacle = 0.8Pobstacle

15



Reminding the Concepts Used for the Tests

16



Reminding the Concepts Used for the Tests

Proactive planning
9 additional hypotheses for generating multiple solution-plans

16



Reminding the Concepts Used for the Tests

Proactive planning
9 additional hypotheses for generating multiple solution-plans

Hypotheses
Global Hypothesis (+ obstacle prediction)
Sub-path region hypotheses: selecting sub-goals (+ obstacle prediction)

16



Reminding the Concepts Used for the Tests

Proactive planning
9 additional hypotheses for generating multiple solution-plans

Hypotheses
Global Hypothesis (+ obstacle prediction)
Sub-path region hypotheses: selecting sub-goals (+ obstacle prediction)

Using multiple planners
The most appropriate: 
D* Lite for adapting the previous plan (the goal remains the same) 
A* for the sub-path region hypotheses (the goal changes)
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Reminding the Concepts Used for the Tests

Proactive planning
9 additional hypotheses for generating multiple solution-plans

Hypotheses
Global Hypothesis (+ obstacle prediction)
Sub-path region hypotheses: selecting sub-goals (+ obstacle prediction)

Using multiple planners
The most appropriate: 
D* Lite for adapting the previous plan (the goal remains the same) 
A* for the sub-path region hypotheses (the goal changes)

Tackling uncertainties with multiple hypotheses
Planning for some possible futures separately

16



Conclusion from the Tests
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Conclusion from the Tests

Proactive planning with multiple hypotheses may be able to improve the performances 
compared to commonly used strategies.

(CPP-1 & CPP-2 for the tests)
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Conclusion from the Tests

Proactive planning with multiple hypotheses may be able to improve the performances 
compared to commonly used strategies.

(CPP-1 & CPP-2 for the tests)

But the hypotheses to plan for and the actions to execute must be selected carefully, 
otherwise unexpected behavior may appear.

(CPP-3 for the tests)
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Critical Aspects

For the multiple hypotheses paradigm, 
some aspects are critical:

The choice and construction of the hypotheses to plan for.
The construction of interesting hypotheses is very difficult without enough semantic information.

The planner selected to solve for a hypothesis must be efficient enough to return a solution before the
hypothesis becomes obsolete.

Selecting the appropriate action to execute must be done carefully.
Otherwise unwanted behavior may appear (getting stuck in a local optimum, doubling back to o�en, ...).

▶ The multiple hypotheses paradigm needs enough semantic information to be efficient.
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Semantic Information
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Semantic Information
With enough semantic information available, a robot could largely enhance its capabilities 

by inferring automatically:

more interesting hypotheses;
(e.g. taking into account that a person can let the robot pass, a chair can be moved, some places would better
be avoided, ...)

which hypothesis to instantiate in which context;
which planner to use for solving a particular hypothesis;
how to create the right input for a planner and a hypothesis;
how to schedule the planning episodes;

(e.g. for hypotheses with different time horizons, priorities, ...)
and how to select the most appropriate action.

▶  Therefore, we are investigating tools for acquiring, storing and managing semantic information, 

such as RoboSherlock1, KnowRob2 and CRAM3.

1. Michael Beetz et al. “RoboSherlock : Unstructured Information Processing for Robot Perception”, in ICRA 2015
2. Moritz Tenorth et Michael Beetz. “Representations for robot knowledge in the KnowRob framework”, in Artificial Intelligence 2015
3. Michael Beetz, Lorenz Mösenlechner et Moritz Tenorth. “CRAM—A Cognitive Robot Abstract Machine for everyday manipulation in human environments”, in IROS

2010
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