
1

Model execution for software development:

a case study with UML state machines in Java

ICAASE 2020 – Tutorial

Eric Cariou

Université de Pau et des Pays de l'Adour
Collège STEE – LIUPPA

November 2020

2

About me
 Assistant professor at the university of Pau, France

 Member of the LIUPPA laboratory

 Eric.Cariou@univ-pau.fr

 http://ecariou.perso.univ-pau.fr/

 Research interests in software engineering
 Software architecture

 Components of communication
 Integration of component, agent and service approaches

 Model-driven engineering
 Verification by contract
 Model execution adaptation
 Model execution with focus on business parts

mailto:Eric.Cariou@univ-pau.fr
http://ecariou.perso.univ-pau.fr/

3

Outline
 What is model execution in the MDE domain?

 Basic example of executable DSL in EMF/Ecore

 PauWare tools
 For executing UML state machines in plain Java

 Association with business operations

 Three concrete code examples
 Two given and one exercice to do

 Resources for using PauWare in this tutorial
 http://ecariou.perso.univ-pau.fr/ICAASE20/

 No installation required
 Use the Java IDE of your choice: Netbeans, Eclipse, IntelliJ, ...
 A small JAR (140 kB) to import in a Java project

http://ecariou.perso.univ-pau.fr/ICAASE20/

4

Executable models
 Examples

 State machines, activity diagrams, Petri nets,
BPEL Web services orchestration …

 A (personal) definition for software development
 An executable model defines the behavior of a system

 Behavior = when, why and how calling business
operations

 UML state machine controlling a microwave oven
 BPEL orchestration reserving a plane ticket calling Web

services and making requests on databases

 An executable model is evolving in time
 Starting point
 Execution step: from one point to another point

5

Executable DSL
 Model-Driven Engineering (MDE)

 Models everywhere for everything!

 Enable defining DSL (Domain Specific Language)

 Meta-model: definition of the DSL
 Concepts of the DSL

 Relations between the concepts

 Models of a DSL being executable
 Requires an execution semantics

 Express how the model is elvoving in time

 xDSL
 DSL which models are executable

6

Process Definition Language

 Let define a basic DSL: PDL for Process
Definition Language

 A sequence of activities

 Example (with an UML-style syntax)

 Concepts
 Process, activity, start

 Relations
 A process contains activities
 An activity has a previous and/or a next one

 Model
 execution xDSL UML State

 machine PauWare

7

Meta-model
 Eclipse Modeling Framework (EMF)

 Reference environment for MDE tools

 Enable to define DSL with concrete syntax and
programs to verify, manipulate, transform or execute
models

 Ecore: meta-meta-model of EMF

 An Ecore model defines the meta-model of a DSL
 Through a simplified UML-like class diagram

 A class = a concept of the DSL

 Completed with OCL invariants for the
well-formedness rules

8

Ecore meta-model of PDL

 One OCL invariant
 The start activity has no previous activity:

context Start
inv: self.first.previous.oclIsUndefined();

9

Model of PDL
 To define a model conforming to PDL

 Instantiate the elements of the meta-model

 Model = set of instances of meta-elements

 Here, no concrete syntax is defined (but could be)
 Use of the generic reflective model editor of EMF

An instance of Activity

The instance of Process

The instance of Start

Edition of the properties
of the selected element
(the ''xDSL'' activity)

10

Manipulation of models
 For an Ecore meta-model, EMF generates a set of Java

interfaces and classes
 Enable to read, save and manipulate models in Java

11

Execution of PDL process
 Implementation of the execution engine

 With an operational semantics

 Concretely : definition of the ''execute'' method of Process

 In the ProcessImpl generated Java class

public void execute() {
 // print the name of the process
 System.out.println(" Process: " + this.getName());
 // get the first activity of the sequence
 Activity act = this.getStart().getFirst();
 // set the new value of the current activity
 this.setCurrentActivity(act);
 // follow the "next" reference through a while loop
 // until the end of the sequence
 while (act != null) {
 System.out.println(" -- " + act.getName());
 // get the next activity of the process
 act = act.getNext();
 // set this activity as the current one
 this.setCurrentActivity(act);
 }
}

12

Execution of the ICAASE model
 The execution for the ICAASE.xmi model prints in

the console:

 Process: ICAASE Tutorial
 -- Model Execution
 -- xDSL
 -- UML State Machine
 -- PauWare

 My execution engine works
 It processes the activities following the sequence defined

in the model

 But concretely what is done?
 Nothing because I do not set what to do for an activity

 Need to associate a business operation with an activity

13

xDSL and business operations
 For my model being the behavior of a concrete system

 Business operations must be executed when going from an
activity to another one

 These operations could be regular Java methods with parameters
and returned values

 Problem
 My execution engine has no idea of what it is executed, it simply

takes a model as parameter and executes it in a generic way:

Process proc = getProcessInFile("model/ICAASE.xmi");
proc.execute();

 In [Cariou et al., 2018], we explain how to attach and execute
Java methods with xDSL models

Eric Cariou, Olivier Le Goaer, Léa Brunschwig and Franck Barbier, ''A generic
solution for weaving business code into executable models'', 4th International
Workshop on Executable Modeling at MoDELS (EXE 2018),
CEUR Workshop Proceedings, vol. 2245, October 2018

14

Interests of executable models
 Many interests of executable models

 The explicit definition of the behavior of the system at a
high level of abstraction

 The executed model in the running system is the one
defined at design

 Seamlessness software development
 Early detection of problems by simulating the model at design

 For the business part
 We argue that programming them in regular language

remains the best way
 See our ICAASE paper: ''A software development process

based on UML state machines''

15

DSL versus GPL
 Classic debate

 DSL: Domain Specific Language
 Defined with EMF as seen and/or tools as the GEMOC studio

 GPL: General Purpose Language
 In the modeling context: UML

DSL GPL

Pros
● Define exactly what you need
● Build your specific tools

● Well-known languages
● Easier for sharing information

or specification
● Existing tools

Cons

● Often build everything from
scratch (inc. user-friendly editors)

● Dependency with the
Eclipse/EMF-ecosystem

● The language must match
your needs

● More difficult to build specific
tools

16

UML state machines
 In this tutorial

 Software development with UML executable state machines

 UML: Unified Modeling Language
 Reference modeling language in software enginnering

 And in other domains

 Semi-formal and graphical notation easy to use for
software engineers

 Standard of the OMG

 State machines
 Well-known formalism for specifying event-based behavior

 Original state machines: Harel's statecharts

David Harel, Statecharts: a visual formalism for complex
systems, Science of Computer Programming, 8(3), 1987

17

Microwave oven example
 Specification of the behavior of a microwave oven

 The door is closed or open
 This defines states

 An open door can become closed and vice-versa
 This defines events and transitions

 The microwave can be activated for heating food
 This defines business operations

 When I open the door and close it, I want to get back in
the previous mode of the oven

 Either doing nothing or heating
 This defines an history

 When the oven is plugged, it is put in an off mode
 This defines a starting state

18

Microwave oven example

 A lot of a tools exist for editing UML diagrams

 Here, we use Modelio, open source version
 https://www.modelio.org/

https://www.modelio.org/

19

Microwave oven example

 Hierarchical definition of states
 Composite and simple states

 A composite state has an initial state

 The state machine also

 Possibility to have parallel regions of states

Initial state
Composite state Simple state

20

Microwave oven example

 Transitions
 Syntax: [guard] event / operation()

 Mandatory elements

 An event, a source and a target states

 Optional

 A guard (boolean expression)
 A business operation

Basic transition Transition with a business operation

21

Microwave oven example

 Business operations associated with states
 Entry: when entering in the state

 Exit: when leaving the state

 Do: when being in the state

 History state
 The concrete target of the transition is the last active state of Closed

 If none, is by default the initial state

Business operationHistory state

22

Microwave oven example

 Execution semantics
 Express how the state machine is evolving when events occur

 Question: ''Baking'' is the active state and the ''DoorOpen'' event
occurs, which transition is followed? The pink or the green?

 Depends of the execution semantics
 UML: the most specific (pink)

 Lead to the ''Paused'' state
 Harel: the most general (green)

 Lead to ''Off'' as the initial state of ''Open''

23

PauWare tools
 PauWare engine

 API for programming UML state machines in plain Java
 Associated with Java business operations

 Execution engine
 Process events and make the state machine evolving
 Execute the required business operations

 Addons
 PauWare code generator

 Model compilation: translational semantics (UML → PauWare)
 Web application generating PauWare code from a UML model

 PauWare viewer
 Draw in a Web browser the state machine under execution

 https://pauware.univ-pau.fr/

https://pauware.univ-pau.fr/

24

Execution semantics of PauWare
 Specification of the UML state machine execution

semantics
 Informally in the UML specification of the OMG

 Last version, 2.5.1, 2017: https://www.omg.org/spec/UML/2.5.1/

 But recently, formally in the Precise Semantics of State
Machine (PSSM) specification

 Version 1.0, 2019: https://www.omg.org/spec/PSSM/1.0/

 Execution semantics of PauWare
 PauWare implemented several years ago, before PSSM

 PauWare implements the informal UML semantics
 Almost all concepts of UML state machines are in PauWare
 Some choices have been made for secondary ambiguous

semantics point

https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/PSSM/1.0/

25

Software development with PauWare
 PauWare engine

 Standalone and lightweight
 JAR file (140 kB size)
 No dependency with specific IDE or frameworks

 Can be used in any Java development
 Java EE, Java SE, Java ME, Android, …

 Business operations are implemented in plain Java
 The link with the PauWare state machine is straigthforward

 PauWare code of the state machine
 Written by hand or generated from UML diagrams

 Limits
 No integration with design tools (for simulation or

early verification for instance)

26

Weaving of business operations
 Link with the business operations when defining

states and transitions
 Three elements to set for an operation

 The object on which the Java method is called
 The name of the method in a String
 An array of Object containing the parameters (optional)

 The method is executed by a dynamic call through the
reflection mechanisms of Java

 No compilation error if you define the call of a method that does
not exist in the class of the object

 Same principle for defining
 A guard or an invariant

 Both are Java methods returning a boolean

27

Implementation of the microwave
 Two Java classes

 One implementing the business part of the microwave
 Basic implementation: 3 boolean attributes

 Light : the light of the microwave (on or off)
 Door : open or closed
 Magnetron : heating or off

 Business methods modifying these attributes

 One implementing the state machine
 Definition of the hierarchy of states and transitions
 Link with the business operations of the business class

 For understanding the classes of the PauWare API
 Javadoc : https://pauware.univ-pau.fr/assets/Javadoc_files/

https://pauware.univ-pau.fr/assets/Javadoc_files/

28

Business class of the microwave
public class MicrowaveBusiness {

 private boolean lightOn = false;
 private boolean doorOpen = false;
 private boolean magnetronOn = false;

 public void stop() {
 lightOn = false;
 magnetronOn = false;
 }

 public void heat() {
 lightOn = true;
 magnetronOn = true;
 }

 public void pause() {
 magnetronOn = false;
 lightOn = true;
 }

 public void openDoor() {
 doorOpen = true;
 }

 public void closeDoor() {
 doorOpen = false;
 }

 public String toString() {
 return "[Light on: "+lightOn+", magnetron on: "+magnetronOn+", door open: "+doorOpen+ "]";
 }
}

29

Microwave: PauWare state machine
public class MicrowaveStateMachine {

 // The states of the state machine
 protected AbstractStatechart open;
 protected AbstractStatechart closed;

 protected AbstractStatechart offOpen;
 protected AbstractStatechart offClosed;
 protected AbstractStatechart baking;
 protected AbstractStatechart paused;

 // The state machine
 protected AbstractStatechart_monitor stateMachine;

 // The business object associated with the state machine
 protected MicrowaveBusiness mwb;

 public void buildAndStartMicrowave() throws Statechart_exception {

 // The state off (of open) executes the "stop" method as entry
 // and is the input state of its composite state
 offOpen = new Statechart("Off");
 offOpen.set_entryAction(mwb, "stop");
 offOpen.inputState();
 ...

30

Microwave: PauWare state machine
...
offClosed = new Statechart("Off");
offClosed.set_entryAction(mwb, "stop");
offClosed.inputState();

baking = new Statechart("Baking");
baking.set_entryAction(mwb, "heat");

paused = new Statechart("Paused");
paused.set_entryAction(mwb, "pause");

// The closed state is a composite containing the off and baking states,
// has a deep history pseudo state and is the input state of its composite
// (that is the state machine)
closed = offClosed.xor(baking).name("Closed");
closed.deep_history();
closed.inputState();

open = offOpen.xor(paused).name("Open");

// Build the global state machine as being composed of the open
// and closed states
stateMachine = new Statechart_monitor(closed.xor(open),"Microwave", true);
...

31

Microwave: PauWare state machine
 ...
 // Basic transitions for the Power event
 stateMachine.fires("Power", offClosed, baking);
 stateMachine.fires("Power", baking, offClosed);
 // Transitions with a business action for managing the door
 stateMachine.fires("DoorOpen", closed, open, true, mwb, "openDoor");
 stateMachine.fires("DoorOpen", baking, paused, true, mwb, "openDoor");
 // Implicit transition towards the history of Closed
 stateMachine.fires("DoorClosed", open, closed, true, mwb, "closeDoor");

 // Start the state machine
 stateMachine.start();

 // A file tracer can be attached to the statemachine: see the code
 }

 // Process the event passed as parameter: trigger the
 // transitions (if any) and executes all required business operations
 public void runEvent(String name) throws Exception {
 // Run to completion cycle: executes everything required
 stateMachine.run_to_completion(name);
 System.out.println("Business object after "+name+ " "+mwb);
 }
}

32

PauWare microwave execution
 When executing this code:

MicrowaveBusiness business = new MicrowaveBusiness();
MicrowaveStateMachine sm = new MicrowaveStateMachine(business);
sm.buildAndStartMicrowave();
sm.runEvent("Power");
sm.runEvent("DoorOpen");
sm.runEvent("Power");
sm.runEvent("Foo");
sm.runEvent("DoorClosed");
sm.runEvent("Power");
sm.stop();

 Print this execution trace:

Business object after Power [Light on: true, magnetron on: true, door open: false]
Business object after DoorOpen [Light on: true, magnetron on: false, door open: true]
Business object after Power [Light on: true, magnetron on: false, door open: true]
Business object after Foo [Light on: true, magnetron on: false, door open: true]
Business object after DoorClosed [Light on: true, magnetron on: true, door open: false]
Business object after Power [Light on: false, magnetron on: false, door open: false]

33

PauWare microwave program

 Download the sources and try the program

 http://ecariou.perso.univ-pau.fr/ICAASE20/

http://ecariou.perso.univ-pau.fr/ICAASE20/

34

PauWare viewer
 Experimental (and not maintained) tool

 Draw the PauWare state machine under execution in a Web browser

 We clearly retrieve the microwave state machine

35

Stack state machine
 Interests of this example

 Guards and invariants

 Business operations with parameters and returned values

 Stack state machine
 Two basic states : empty or not

 Two events : push or pop (a value)

 The business object is a Java stack of String

36

Stack state machine: invariant
 Invariant

 Constraint to be ensured during the state machine execution

 Define with a Java method returning a boolean

 Example: in the empty state, the Java stack is empty
 The invariant method

public boolean stackEmpty() {
 return stack.isEmpty();
}

 Association of the invariant with the state empty

empty = new Statechart("Empty");
// the invariant method will be called on the current object
empty.stateInvariant(this, "stackEmpty");

 Verification of the invariants after a run to completion cycle

stateMachine.run_to_completion("pop", AbstractStatechart_monitor.Compute_invariants);

37

Stack state machine: guard & bus. op.
 The transition from Not Empty to Empty for the event ''pop''

 A guard: only one element to go to the Empty state

public boolean onlyOne() {
 return stack.size() == 1;
}

 A business operation : actionPop()

public String actionPop() {
 String value = stack.pop();
 return value;
}

 Then the definition of the transition (both methods are called on the
current object)

stateMachine.fires("pop", notEmpty, empty, this, "onlyOne", this, "actionPop");

38

Control and data flows
 When the ''pop'' event occurs and the stack is not empty

 The actionPop() is called and returned the top of the stack

 But who is getting the returned value?
 No one!

 In classic imperative programming, we can write

String res = this.actionPop();
if (res==null) System.err.println("Null value");
else myFileObject.writeObject(res);

 The control flow is the sequence of operations and the
if … then … else statement

 The data flow is the variable res returned from actionPop()
and passed as parameter to writeObject()

 The control and the data flows are mixed

39

Control and data flows
 With executable models

 Control flow = the behavior reified in the model

 Our two kind of models
 State-machine: event-based

 When an event occurs, I do something

 DSL of PDL: ordered sequence

 When an activity is finished, I start the next one
 We could also have executed business operations in activities as in

states and transitions with PauWare

 In none, it is/can be (directly) expressed how the data
are going from one state/activity to another one

 Executable models + business operations
 Clear separation of concerns but can be a too big separation!

 Solution: data shared within a common object (see the
ICAASE and [Cariou et al., 2018] papers)

40

Parameters of business operations
 Business operations can have parameters

 In PauWare, it is passed as an array of Object

 If parameters change
 For states: redefine the entry/exit/do action with the

new parameters

 For transitions: redefine the complete transition
 Concretely, the transition is not redefined, it is detected that the

same transition exists, it only changes the parameters

 The ''push'' event with the value to push on the stack

public void pushEvent(String value) {
 // The transitions are redefined for putting the value as parameter when calling the "actionPush" method
 stateMachine.fires("push", empty, notEmpty, true, this, "actionPush", new Object[] { value });
 stateMachine.fires("push", notEmpty, notEmpty, true, this, "actionPush", new Object[] { value });
 // Now the push event can be processed
 stateMachine.run_to_completion("push", AbstractStatechart_monitor.Compute_invariants);
}

41

Parameters of business operations
 This way of passing parameters

 Justify the implementation choice to have a method for
processing an event

 Because of the need to redefine the transitions and/or
business operations of states

 Too complex?
 PauWare v2 enables to redefine only the parameters of

the business operations

 Remember that the PauWare code generator can
generate this code for you from a UML model

 The same logic is also applied to guards and
invariants methods

42

Stack & car state machines

 Try the code of the stack state machine

 And then, you can implement the car state
machine

43

Conclusion
 Executable models

 Clear separation between the behavior and the
business parts

 The behavior is defined at a high level of abstraction
in a model

 Same model at design and runtime
 Seamlessness development

 PauWare
 Set of tools for executing UML state machines

 Lightweight library
 Can be used for any Java development

 Business operations defined at standard Java code
 Most efficient and suitable way to do it

	Titre
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

