
1

Model execution for software development:

a case study with UML state machines in Java

ICAASE 2020 – Tutorial

Eric Cariou

Université de Pau et des Pays de l'Adour
Collège STEE – LIUPPA

November 2020

2

About me
 Assistant professor at the university of Pau, France

 Member of the LIUPPA laboratory

 Eric.Cariou@univ-pau.fr

 http://ecariou.perso.univ-pau.fr/

 Research interests in software engineering
 Software architecture

 Components of communication
 Integration of component, agent and service approaches

 Model-driven engineering
 Verification by contract
 Model execution adaptation
 Model execution with focus on business parts

mailto:Eric.Cariou@univ-pau.fr
http://ecariou.perso.univ-pau.fr/

3

Outline
 What is model execution in the MDE domain?

 Basic example of executable DSL in EMF/Ecore

 PauWare tools
 For executing UML state machines in plain Java

 Association with business operations

 Three concrete code examples
 Two given and one exercice to do

 Resources for using PauWare in this tutorial
 http://ecariou.perso.univ-pau.fr/ICAASE20/

 No installation required
 Use the Java IDE of your choice: Netbeans, Eclipse, IntelliJ, ...
 A small JAR (140 kB) to import in a Java project

http://ecariou.perso.univ-pau.fr/ICAASE20/

4

Executable models
 Examples

 State machines, activity diagrams, Petri nets,
BPEL Web services orchestration …

 A (personal) definition for software development
 An executable model defines the behavior of a system

 Behavior = when, why and how calling business
operations

 UML state machine controlling a microwave oven
 BPEL orchestration reserving a plane ticket calling Web

services and making requests on databases

 An executable model is evolving in time
 Starting point
 Execution step: from one point to another point

5

Executable DSL
 Model-Driven Engineering (MDE)

 Models everywhere for everything!

 Enable defining DSL (Domain Specific Language)

 Meta-model: definition of the DSL
 Concepts of the DSL

 Relations between the concepts

 Models of a DSL being executable
 Requires an execution semantics

 Express how the model is elvoving in time

 xDSL
 DSL which models are executable

6

Process Definition Language

 Let define a basic DSL: PDL for Process
Definition Language

 A sequence of activities

 Example (with an UML-style syntax)

 Concepts
 Process, activity, start

 Relations
 A process contains activities
 An activity has a previous and/or a next one

 Model
 execution xDSL UML State

 machine PauWare

7

Meta-model
 Eclipse Modeling Framework (EMF)

 Reference environment for MDE tools

 Enable to define DSL with concrete syntax and
programs to verify, manipulate, transform or execute
models

 Ecore: meta-meta-model of EMF

 An Ecore model defines the meta-model of a DSL
 Through a simplified UML-like class diagram

 A class = a concept of the DSL

 Completed with OCL invariants for the
well-formedness rules

8

Ecore meta-model of PDL

 One OCL invariant
 The start activity has no previous activity:

context Start
inv: self.first.previous.oclIsUndefined();

9

Model of PDL
 To define a model conforming to PDL

 Instantiate the elements of the meta-model

 Model = set of instances of meta-elements

 Here, no concrete syntax is defined (but could be)
 Use of the generic reflective model editor of EMF

An instance of Activity

The instance of Process

The instance of Start

Edition of the properties
of the selected element
(the ''xDSL'' activity)

10

Manipulation of models
 For an Ecore meta-model, EMF generates a set of Java

interfaces and classes
 Enable to read, save and manipulate models in Java

11

Execution of PDL process
 Implementation of the execution engine

 With an operational semantics

 Concretely : definition of the ''execute'' method of Process

 In the ProcessImpl generated Java class

public void execute() {
 // print the name of the process
 System.out.println(" Process: " + this.getName());
 // get the first activity of the sequence
 Activity act = this.getStart().getFirst();
 // set the new value of the current activity
 this.setCurrentActivity(act);
 // follow the "next" reference through a while loop
 // until the end of the sequence
 while (act != null) {
 System.out.println(" -- " + act.getName());
 // get the next activity of the process
 act = act.getNext();
 // set this activity as the current one
 this.setCurrentActivity(act);
 }
}

12

Execution of the ICAASE model
 The execution for the ICAASE.xmi model prints in

the console:

 Process: ICAASE Tutorial
 -- Model Execution
 -- xDSL
 -- UML State Machine
 -- PauWare

 My execution engine works
 It processes the activities following the sequence defined

in the model

 But concretely what is done?
 Nothing because I do not set what to do for an activity

 Need to associate a business operation with an activity

13

xDSL and business operations
 For my model being the behavior of a concrete system

 Business operations must be executed when going from an
activity to another one

 These operations could be regular Java methods with parameters
and returned values

 Problem
 My execution engine has no idea of what it is executed, it simply

takes a model as parameter and executes it in a generic way:

Process proc = getProcessInFile("model/ICAASE.xmi");
proc.execute();

 In [Cariou et al., 2018], we explain how to attach and execute
Java methods with xDSL models

Eric Cariou, Olivier Le Goaer, Léa Brunschwig and Franck Barbier, ''A generic
solution for weaving business code into executable models'', 4th International
Workshop on Executable Modeling at MoDELS (EXE 2018),
CEUR Workshop Proceedings, vol. 2245, October 2018

14

Interests of executable models
 Many interests of executable models

 The explicit definition of the behavior of the system at a
high level of abstraction

 The executed model in the running system is the one
defined at design

 Seamlessness software development
 Early detection of problems by simulating the model at design

 For the business part
 We argue that programming them in regular language

remains the best way
 See our ICAASE paper: ''A software development process

based on UML state machines''

15

DSL versus GPL
 Classic debate

 DSL: Domain Specific Language
 Defined with EMF as seen and/or tools as the GEMOC studio

 GPL: General Purpose Language
 In the modeling context: UML

DSL GPL

Pros
● Define exactly what you need
● Build your specific tools

● Well-known languages
● Easier for sharing information

or specification
● Existing tools

Cons

● Often build everything from
scratch (inc. user-friendly editors)

● Dependency with the
Eclipse/EMF-ecosystem

● The language must match
your needs

● More difficult to build specific
tools

16

UML state machines
 In this tutorial

 Software development with UML executable state machines

 UML: Unified Modeling Language
 Reference modeling language in software enginnering

 And in other domains

 Semi-formal and graphical notation easy to use for
software engineers

 Standard of the OMG

 State machines
 Well-known formalism for specifying event-based behavior

 Original state machines: Harel's statecharts

David Harel, Statecharts: a visual formalism for complex
systems, Science of Computer Programming, 8(3), 1987

17

Microwave oven example
 Specification of the behavior of a microwave oven

 The door is closed or open
 This defines states

 An open door can become closed and vice-versa
 This defines events and transitions

 The microwave can be activated for heating food
 This defines business operations

 When I open the door and close it, I want to get back in
the previous mode of the oven

 Either doing nothing or heating
 This defines an history

 When the oven is plugged, it is put in an off mode
 This defines a starting state

18

Microwave oven example

 A lot of a tools exist for editing UML diagrams

 Here, we use Modelio, open source version
 https://www.modelio.org/

https://www.modelio.org/

19

Microwave oven example

 Hierarchical definition of states
 Composite and simple states

 A composite state has an initial state

 The state machine also

 Possibility to have parallel regions of states

Initial state
Composite state Simple state

20

Microwave oven example

 Transitions
 Syntax: [guard] event / operation()

 Mandatory elements

 An event, a source and a target states

 Optional

 A guard (boolean expression)
 A business operation

Basic transition Transition with a business operation

21

Microwave oven example

 Business operations associated with states
 Entry: when entering in the state

 Exit: when leaving the state

 Do: when being in the state

 History state
 The concrete target of the transition is the last active state of Closed

 If none, is by default the initial state

Business operationHistory state

22

Microwave oven example

 Execution semantics
 Express how the state machine is evolving when events occur

 Question: ''Baking'' is the active state and the ''DoorOpen'' event
occurs, which transition is followed? The pink or the green?

 Depends of the execution semantics
 UML: the most specific (pink)

 Lead to the ''Paused'' state
 Harel: the most general (green)

 Lead to ''Off'' as the initial state of ''Open''

23

PauWare tools
 PauWare engine

 API for programming UML state machines in plain Java
 Associated with Java business operations

 Execution engine
 Process events and make the state machine evolving
 Execute the required business operations

 Addons
 PauWare code generator

 Model compilation: translational semantics (UML → PauWare)
 Web application generating PauWare code from a UML model

 PauWare viewer
 Draw in a Web browser the state machine under execution

 https://pauware.univ-pau.fr/

https://pauware.univ-pau.fr/

24

Execution semantics of PauWare
 Specification of the UML state machine execution

semantics
 Informally in the UML specification of the OMG

 Last version, 2.5.1, 2017: https://www.omg.org/spec/UML/2.5.1/

 But recently, formally in the Precise Semantics of State
Machine (PSSM) specification

 Version 1.0, 2019: https://www.omg.org/spec/PSSM/1.0/

 Execution semantics of PauWare
 PauWare implemented several years ago, before PSSM

 PauWare implements the informal UML semantics
 Almost all concepts of UML state machines are in PauWare
 Some choices have been made for secondary ambiguous

semantics point

https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/PSSM/1.0/

25

Software development with PauWare
 PauWare engine

 Standalone and lightweight
 JAR file (140 kB size)
 No dependency with specific IDE or frameworks

 Can be used in any Java development
 Java EE, Java SE, Java ME, Android, …

 Business operations are implemented in plain Java
 The link with the PauWare state machine is straigthforward

 PauWare code of the state machine
 Written by hand or generated from UML diagrams

 Limits
 No integration with design tools (for simulation or

early verification for instance)

26

Weaving of business operations
 Link with the business operations when defining

states and transitions
 Three elements to set for an operation

 The object on which the Java method is called
 The name of the method in a String
 An array of Object containing the parameters (optional)

 The method is executed by a dynamic call through the
reflection mechanisms of Java

 No compilation error if you define the call of a method that does
not exist in the class of the object

 Same principle for defining
 A guard or an invariant

 Both are Java methods returning a boolean

27

Implementation of the microwave
 Two Java classes

 One implementing the business part of the microwave
 Basic implementation: 3 boolean attributes

 Light : the light of the microwave (on or off)
 Door : open or closed
 Magnetron : heating or off

 Business methods modifying these attributes

 One implementing the state machine
 Definition of the hierarchy of states and transitions
 Link with the business operations of the business class

 For understanding the classes of the PauWare API
 Javadoc : https://pauware.univ-pau.fr/assets/Javadoc_files/

https://pauware.univ-pau.fr/assets/Javadoc_files/

28

Business class of the microwave
public class MicrowaveBusiness {

 private boolean lightOn = false;
 private boolean doorOpen = false;
 private boolean magnetronOn = false;

 public void stop() {
 lightOn = false;
 magnetronOn = false;
 }

 public void heat() {
 lightOn = true;
 magnetronOn = true;
 }

 public void pause() {
 magnetronOn = false;
 lightOn = true;
 }

 public void openDoor() {
 doorOpen = true;
 }

 public void closeDoor() {
 doorOpen = false;
 }

 public String toString() {
 return "[Light on: "+lightOn+", magnetron on: "+magnetronOn+", door open: "+doorOpen+ "]";
 }
}

29

Microwave: PauWare state machine
public class MicrowaveStateMachine {

 // The states of the state machine
 protected AbstractStatechart open;
 protected AbstractStatechart closed;

 protected AbstractStatechart offOpen;
 protected AbstractStatechart offClosed;
 protected AbstractStatechart baking;
 protected AbstractStatechart paused;

 // The state machine
 protected AbstractStatechart_monitor stateMachine;

 // The business object associated with the state machine
 protected MicrowaveBusiness mwb;

 public void buildAndStartMicrowave() throws Statechart_exception {

 // The state off (of open) executes the "stop" method as entry
 // and is the input state of its composite state
 offOpen = new Statechart("Off");
 offOpen.set_entryAction(mwb, "stop");
 offOpen.inputState();
 ...

30

Microwave: PauWare state machine
...
offClosed = new Statechart("Off");
offClosed.set_entryAction(mwb, "stop");
offClosed.inputState();

baking = new Statechart("Baking");
baking.set_entryAction(mwb, "heat");

paused = new Statechart("Paused");
paused.set_entryAction(mwb, "pause");

// The closed state is a composite containing the off and baking states,
// has a deep history pseudo state and is the input state of its composite
// (that is the state machine)
closed = offClosed.xor(baking).name("Closed");
closed.deep_history();
closed.inputState();

open = offOpen.xor(paused).name("Open");

// Build the global state machine as being composed of the open
// and closed states
stateMachine = new Statechart_monitor(closed.xor(open),"Microwave", true);
...

31

Microwave: PauWare state machine
 ...
 // Basic transitions for the Power event
 stateMachine.fires("Power", offClosed, baking);
 stateMachine.fires("Power", baking, offClosed);
 // Transitions with a business action for managing the door
 stateMachine.fires("DoorOpen", closed, open, true, mwb, "openDoor");
 stateMachine.fires("DoorOpen", baking, paused, true, mwb, "openDoor");
 // Implicit transition towards the history of Closed
 stateMachine.fires("DoorClosed", open, closed, true, mwb, "closeDoor");

 // Start the state machine
 stateMachine.start();

 // A file tracer can be attached to the statemachine: see the code
 }

 // Process the event passed as parameter: trigger the
 // transitions (if any) and executes all required business operations
 public void runEvent(String name) throws Exception {
 // Run to completion cycle: executes everything required
 stateMachine.run_to_completion(name);
 System.out.println("Business object after "+name+ " "+mwb);
 }
}

32

PauWare microwave execution
 When executing this code:

MicrowaveBusiness business = new MicrowaveBusiness();
MicrowaveStateMachine sm = new MicrowaveStateMachine(business);
sm.buildAndStartMicrowave();
sm.runEvent("Power");
sm.runEvent("DoorOpen");
sm.runEvent("Power");
sm.runEvent("Foo");
sm.runEvent("DoorClosed");
sm.runEvent("Power");
sm.stop();

 Print this execution trace:

Business object after Power [Light on: true, magnetron on: true, door open: false]
Business object after DoorOpen [Light on: true, magnetron on: false, door open: true]
Business object after Power [Light on: true, magnetron on: false, door open: true]
Business object after Foo [Light on: true, magnetron on: false, door open: true]
Business object after DoorClosed [Light on: true, magnetron on: true, door open: false]
Business object after Power [Light on: false, magnetron on: false, door open: false]

33

PauWare microwave program

 Download the sources and try the program

 http://ecariou.perso.univ-pau.fr/ICAASE20/

http://ecariou.perso.univ-pau.fr/ICAASE20/

34

PauWare viewer
 Experimental (and not maintained) tool

 Draw the PauWare state machine under execution in a Web browser

 We clearly retrieve the microwave state machine

35

Stack state machine
 Interests of this example

 Guards and invariants

 Business operations with parameters and returned values

 Stack state machine
 Two basic states : empty or not

 Two events : push or pop (a value)

 The business object is a Java stack of String

36

Stack state machine: invariant
 Invariant

 Constraint to be ensured during the state machine execution

 Define with a Java method returning a boolean

 Example: in the empty state, the Java stack is empty
 The invariant method

public boolean stackEmpty() {
 return stack.isEmpty();
}

 Association of the invariant with the state empty

empty = new Statechart("Empty");
// the invariant method will be called on the current object
empty.stateInvariant(this, "stackEmpty");

 Verification of the invariants after a run to completion cycle

stateMachine.run_to_completion("pop", AbstractStatechart_monitor.Compute_invariants);

37

Stack state machine: guard & bus. op.
 The transition from Not Empty to Empty for the event ''pop''

 A guard: only one element to go to the Empty state

public boolean onlyOne() {
 return stack.size() == 1;
}

 A business operation : actionPop()

public String actionPop() {
 String value = stack.pop();
 return value;
}

 Then the definition of the transition (both methods are called on the
current object)

stateMachine.fires("pop", notEmpty, empty, this, "onlyOne", this, "actionPop");

38

Control and data flows
 When the ''pop'' event occurs and the stack is not empty

 The actionPop() is called and returned the top of the stack

 But who is getting the returned value?
 No one!

 In classic imperative programming, we can write

String res = this.actionPop();
if (res==null) System.err.println("Null value");
else myFileObject.writeObject(res);

 The control flow is the sequence of operations and the
if … then … else statement

 The data flow is the variable res returned from actionPop()
and passed as parameter to writeObject()

 The control and the data flows are mixed

39

Control and data flows
 With executable models

 Control flow = the behavior reified in the model

 Our two kind of models
 State-machine: event-based

 When an event occurs, I do something

 DSL of PDL: ordered sequence

 When an activity is finished, I start the next one
 We could also have executed business operations in activities as in

states and transitions with PauWare

 In none, it is/can be (directly) expressed how the data
are going from one state/activity to another one

 Executable models + business operations
 Clear separation of concerns but can be a too big separation!

 Solution: data shared within a common object (see the
ICAASE and [Cariou et al., 2018] papers)

40

Parameters of business operations
 Business operations can have parameters

 In PauWare, it is passed as an array of Object

 If parameters change
 For states: redefine the entry/exit/do action with the

new parameters

 For transitions: redefine the complete transition
 Concretely, the transition is not redefined, it is detected that the

same transition exists, it only changes the parameters

 The ''push'' event with the value to push on the stack

public void pushEvent(String value) {
 // The transitions are redefined for putting the value as parameter when calling the "actionPush" method
 stateMachine.fires("push", empty, notEmpty, true, this, "actionPush", new Object[] { value });
 stateMachine.fires("push", notEmpty, notEmpty, true, this, "actionPush", new Object[] { value });
 // Now the push event can be processed
 stateMachine.run_to_completion("push", AbstractStatechart_monitor.Compute_invariants);
}

41

Parameters of business operations
 This way of passing parameters

 Justify the implementation choice to have a method for
processing an event

 Because of the need to redefine the transitions and/or
business operations of states

 Too complex?
 PauWare v2 enables to redefine only the parameters of

the business operations

 Remember that the PauWare code generator can
generate this code for you from a UML model

 The same logic is also applied to guards and
invariants methods

42

Stack & car state machines

 Try the code of the stack state machine

 And then, you can implement the car state
machine

43

Conclusion
 Executable models

 Clear separation between the behavior and the
business parts

 The behavior is defined at a high level of abstraction
in a model

 Same model at design and runtime
 Seamlessness development

 PauWare
 Set of tools for executing UML state machines

 Lightweight library
 Can be used for any Java development

 Business operations defined at standard Java code
 Most efficient and suitable way to do it

	Titre
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

