
1

Programme de la journée commune des GT VL & IDM

Paris, LIP6, 10 Mars 2023

How to come to LIP6 : https://www.lip6.fr/informations/comment.php

The meeting will take place in room 101 "Laurière" at level 1 between towers 25 & 26.

There is a door in the corridor to access the room. If it is closed, please call the phone number 
you have received by e-mail.

Zoom meeting information :

Topic: GT Vélocité Logicielle
Time: Mar 10, 2023 09:30 AM Paris

Join Zoom Meeting
https://u-bordeaux-fr.zoom.us/j/85792741747?pwd=TmtBalBVbDVpWURvOU40a3JKS29uZz09

Meeting ID: 857 9274 1747
Passcode: 978808

Join by SIP
85792741747@zoomcrc.com

Join by H.323
162.255.37.11 (US West)
162.255.36.11 (US East)
213.19.144.110 (Amsterdam Netherlands)
213.244.140.110 (Germany)
Meeting ID: 857 9274 1747
Passcode: 978808

https://www.lip6.fr/informations/comment.php
https://u-bordeaux-fr.zoom.us/j/85792741747?pwd=TmtBalBVbDVpWURvOU40a3JKS29uZz09
mailto:85792741747@zoomcrc.com


2

Programme du matin

Horaire Orateur Email Titre Résumé
9h30-10h00 Accueil & Café
10h00-11h00 Jean-Rémy Falleri, LABRI falleri@labri.fr Diff de logs de builds logiciels
11h00-11h15 Pause café 
11h15-11h45 Aless Hosry, INRIA Lille aless.hosry@inria.fr Classification and detection of hidden dependencies in software 

engineering.
The use of multi-tier and multi-language applications has become increasingly common in modern software 
practice. In such applications, developers bind numerous artifacts written in different languages or tiers, 
leading to hidden dependencies between these artifacts. The identification of those dependencies is 
necessary to provide advanced tools going from smart refactoring to software reengineering. The 
identification of those dependencies is necessary to provide advanced tools going from smart refactoring to 
software reengineering. Some tools identify such dependencies in a very specific way: the rules to detect 
them are usually enforced in the tool and there is no generic framework to help defining them. In this 
presentation, we focus on identifying multiple types of hidden dependencies and discuss a new tool 
XLLDetector that we developed, how patterns are developed and rules are codified, and some early results.

11h45-12h15 Guillaume HABEN, 
Université du Luxembourg

guillaume.haben@uni.lu What Made This Test Flake? Pinpointing Classes Responsible for 
Test Flakiness

Flaky tests are defined as tests that manifest non-deterministic behaviour by passing and failing 
intermittently for the same version of the code. These tests cripple continuous integration with false alerts 
that waste developers’ time and break their trust in regression testing. To mitigate the effects of flakiness, 
both researchers and industrial experts proposed strategies and tools to detect and isolate flaky tests. 
However, flaky tests are rarely fixed as developers struggle to localise and understand their causes. 
Additionally, developers working with large codebases often need to know the sources of non-determinism 
to preserve code quality, i.e., avoid introducing technical debt linked with non-deterministic behaviour, and to 
avoid introducing new flaky tests. To aid with these tasks, we propose re-targeting Fault Localisation 
techniques to the flaky component localisation problem, i.e., pinpointing program classes that cause the non-
deterministic behaviour of flaky tests. In particular, we employ Spectrum-Based Fault Localisation (SBFL), a 
coverage-based fault localisation technique commonly adopted for its simplicity and effectiveness. We also 
utilise other data sources, such as change history and static code metrics, to further improve the localisation. 
Our results show that augmenting SBFL with change and code metrics ranks flaky classes in the top-1 and 
top-5 suggestions, in 26% and 47% of the cases. Overall, we successfully reduced the average number of 
classes inspected to locate the first flaky class to 19% of the total number of classes covered by flaky tests. 
Our results also show that localisation methods are effective in major flakiness categories, such as 
concurrency and asynchronous waits, indicating their general ability to identify flaky components.

12h15-12h45 Nicolas Méric, LRI nicolas.meric@lri.fr Using Ontologies in Formal Developments Targeting Certification A common problem in the certification of highly safety or security critical systems is the consistency of the 
certification documen- tation in general and, in particular, the linking between semi-formal and formal content 
of the certification documentation. We address this problem by using an existing framework, Isabelle/DOF, 
that allows writing certification documents with consistency guarantees, in both, the semi-formal and formal 
parts. Isabelle/DOF supports the modeling of document ontologies using a strongly typed ontology defini- 
tion language. An ontology is then enforced inside documents including formal parts, e. g., system models, 
verification proofs, code, tests and validations of corner-cases. The entire set of documents is checked 
within Isabelle/HOL, which includes the definition of ontologies and the editing of integrated documents 
based on them. This process is supported by an IDE that provides continuous checking of the document 
consistency. In this paper, we present how a specific software-engineering certification standard, namely 
CENELEC 50128, can be modeled inside Is- abelle/DOF. Based on an ontology covering a substantial part 
of this standard, we present how Isabelle/DOF can be applied to a certification case-study in the railway 
domain.

12h45-12h55 Andrey Sadovykh, Softeam andrey.sadovykh@softeam.fr Requirements as Code (exposé court)
12h55-13h05 Asbath Biyalou-Sama, 

CRIStAL
asbathou.biyalousama@univ-lille.fr More simple interactions in MDE (exposé court)

13h05-14h15 Déjeuner



3

Programme de l'après-midi

14h15-14h45 Arnaud Blouin, IRISA arnaud.blouin@irisa.fr Interacto: A Modern User Interaction Processing Model Since most software systems provide their users with interactive features, building user interfaces (UI) is one 
of the core software engineering tasks. It consists in designing, implementing and testing ever more 
sophisticated and versatile ways for users to interact with software systems, and safely connecting these 
interactions with commands querying or modifying their state. However, most UI frameworks still rely on a 
low level model, the bare bone UI event processing model. This model was suitable for the rather simple UIs 
of the early 80's (menus, buttons, keyboards, mouse clicks), but now exhibits major software engineering 
flaws for modern, highly interactive UIs. These flaws include lack of separation of concerns, weak modularity 
and thus low reusability of code for advanced interactions, as well as low testability. To mitigate these flaws, 
we propose Interacto as a high level user interaction processing model. By reifying the concept of user 
interaction, Interacto makes it easy to design, implement and test modular and reusable advanced user 
interactions, and to connect them to commands with built-in undo/redo support. To demonstrate its 
applicability and generality, we briefly present two open source implementations of Interacto for 
Java/JavaFX and TypeScript/Angular. We evaluate Interacto interest (1) on a real world case study, where it 
has been used since 2013, and with (2) a controlled experiment with 44 master students, comparing it with 
traditionnal UI frameworks.

14h45-15h15 Pooya Rostami Mazrae, 
Université de Mons

Pooya.ROSTAMIMAZRAE@umons.ac.be On the Use of GitHub Actions in Software Development 
Repositories

GitHub Actions was introduced in 2019 and constitutes an integrated alternative to CI/CD services for 
GitHub repositories. The deep integration with GitHub allows repositories to easily automate software 
development workflows. This paper empirically studies the use of GitHub Actions on a dataset comprising 
68K repositories on GitHub, of which 43.9% are using GitHub Actions workflows. We analyse which 
workflows are automated and identify the most frequent automation practices. We show that reuse of actions 
is a common practice, even if this reuse is concentrated in a limited number of actions. We study which 
actions are most frequently used and how workflows refer to them. Furthermore, we discuss the related 
security and versioning aspects. As such, we provide an overview of the use of GitHub Actions, constituting 
a necessary first step towards a better understanding of this emerging ecosystem and its implications on 
collaborative software development in the GitHub social coding platform.

15h15-15h45 Faezeh Khorram, IMT 
Atlantique

faezeh.khorram@inria.fr Automatic test amplification for executable models Behavioral models are important assets that must be thoroughly verified early in the design process. This 
can be achieved with manually-written test cases that embed carefully hand-picked domain-specific input 
data. However, such test cases may not always reach the desired level of quality, such as high coverage or 
being able to localize faults efficiently. Test amplification is an interesting emergent approach to improve a 
test suite by automatically generating new test cases out of existing manually-written ones. Yet, while ad-hoc 
test amplification solutions have been proposed for a few programming languages, no solution currently 
exists for amplifying the test cases of behavioral models. In this paper, we fill this gap with an automated and 
generic approach. Given an executable DSL, a conforming behavioral model, and an existing test suite, our 
approach generates new regression test cases in three steps: (i) generating new test inputs by applying a 
set of generic modifiers on the existing test inputs; (ii) running the model under test with new inputs and 
generating assertions from the execution traces; and (iii) selecting the new test cases that increase the 
mutation score. We provide tool support for the approach atop the Eclipse GEMOC Studio and show its 
applicability in an empirical study. In the experiment, we applied the approach to 71 test suites written for 
models conforming to two different DSLs, and for 67 of the 71 cases, it successfully improved the mutation 
score between 3.17% and 54.11% depending on the initial setup.

15h45-16h15 Corentin Latappy, LABRI corentin.latappy@labri.fr MLinter: Learning Coding Practices from Examples-Dream or 
Reality?

Coding practices are increasingly used by software companies. Their use promotes consistency, readability, 
and maintainability, which contribute to software quality. Coding practices were initially enforced by general-
purpose linters, but companies now tend to design and adopt their own company-specific practices. 
However, these company-specific practices are often not automated, making it challenging to ensure they 
are shared and used by developers. Converting these practices into linter rules is a complex task that 
requires extensive static analysis and language engineering expertise. In this paper, we seek to answer the 
following question: can coding practices be learned automatically from examples manually tagged by 
developers? We conduct a feasibility study using CodeBERT, a state-of-the-art machine learning approach, 
to learn linter rules. Our results show that, although the resulting classifiers reach high precision and recall 
scores when evaluated on balanced synthetic datasets, their application on real-world, unbalanced 
codebases, while maintaining excellent recall, suffers from a severe drop in precision that hinders their 
usability.

16h15-16h30 Pause café 
16h30-17h00 Bilan / Discussion 


