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Abstract. The increasing importance of metamodeling calls for metamodels 
that are free of ambiguities, contradictions and redundancies. This is 
specifically the case for the core of UML (Infrastructure). This paper proposes 
to rewrite a part of this core, the Class and Property metaclasses especially. To 
avoid infinite regression, the notion of meta-circularity is used. This rewriting is 
done by means of inductive types in constructive logic. The proposed 
specification is proven correct using the Coq automated prover. Proven lemmas 
and theorems about a “metaness” relationship are proposed. 
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1   Introduction 

The Unified Modeling Language (UML) [1] is historically based on metamodeling [2-
4]. Because models are “instances of” or “conform to” metamodels, they are tinged 
with errors when metamodels they come from have anomalies. This phenomenon is 
even more important when metamodels are implemented in operational environments 
like the Eclipse Modeling Framework (EMF) [5]. Model transformations occur at 
design time or there is a possibility of having executable models at runtime. In the 
latter case, persistent metamodels act as a reflection mechanism (metadata) and Java 
may act as an action language to manage models at runtime. 

UML has chosen a four-layer metamodel hierarchy with an upper level named M3. 
This level is a set of booting notions called “Infrastructure” [6] that reuses elements 
from the InfrastructureLibrary and the Meta Object Facility (MOF) [7]. UML 
promotes the “anything must be an instance of something” adage. In this scope, the 
key Class and Property metaclasses at M3 (Fig. 1) must then be instances of 
something at M4. However, introducing a M4 layer leads to the introduction of a M5 
layer that leads to… Avoiding such an infinite regression requires an appropriate 
specification named meta-circularity [8]; the Class and Property metaclasses must 
then be formally specified such that: 
− They are instances of something without the need of extra metamodeling layers. 

This in particular supposes a clear (explicit) characterization of Instantiation; 
− They are generative. All of the other highly useful core metaclasses like Object, 

Type, Association, Generalization… even some missing like the Composition 



metaclass (black diamond in the UML notation)1, may be defined through 
appropriate instantiation protocols. This approach called “inductive UML” is such 
that UML can be recursively defined. 

 
Fig. 1. The “very core” of UML with Class and Property as booting notions. 

Numerous research works [8-12] (see also Related works section) are attempts to 
better clarify the semantics of metamodels in the UML universe: MOF, Infrastructure, 
Superstructure and any possible extension. Out of these, metamodel re-formalizations 
often rely on “theories” (e.g., non-classical logics) beyond the set theory. 

In this paper, metaclasses are rewritten in the form of inductive types coming from 
the constructive logic supported by the Coq automated prover [13] as follows: 
Inductive X : Type := (* Type is a predefined Coq sort 
among Type, Set and Prop *) 
| God (* First constructor *) 
| cons : X -> X. (* Second constructor *) 
God and cons are the names of the two chosen constructors for the X type along 

with their signatures. Common functions may be defined as follows: 
Definition father(x : X) : X := match x with 
| cons source => source (* father x is equal to source 
when x has been constructed by means of the 2nd 
constructor, i.e., cons source *) 
| _ => God (* Result is God for the remaining 
constructor(s); underscore sign means “any” in Coq *) 
end. 
Proofs are based on “tactics” to converge towards a given goal from initial and 

intermediately computed hypotheses. 
So, in this paper, we specify and prove the correctness of a metamodeling 

framework based on Coq. For that, Kühne’s metamodeling framework [2-3] is the 
main stream of inspiration. In his categorization, Kühne proposes in [3, pp. 377-378] 
a general-purpose mathematical relationship called “metaness” having the following 
characteristics: acyclicity, antitransitivity and level-respecting. 

To make explicit a proven metamodeling framework, we structure this paper as 
follows: Section 2 is a reminder about the current UML design principles and 
organization. We specify Class and Property in Coq and how to use them by 
introducing metanavigations and by showing how to instantiate any other metaclass. 
Accordingly, the Instantiation relationship is formalized. Section 3 is the specification 

                                                             
1 This kind of relationship is intensively used at the M3 level without any formal semantics (see 

for instance Fig. 1). 



of Kühne’s metaness along with short proofs. Section 4 is about related work while 
Section 5 draws some conclusions and evokes some perspectives. 

2   UML core organization as dependent inductive types 

The model in Fig. 1 means: 
− A Class instance is composed (black diamond) of either zero or many Property 

instances (ownedAttribute role). A given Property instance belongs (or not) to at 
most one Class instance (class role); unsharing applies, i.e., a given Property 
object cannot belong to distinct Class objects; 

− A Class instance is linked to either zero or many Class instances having the 
superClass role2. The reverse navigation means that a given Class has (or not) 
direct descendant classes; this metarelationship embodies Generalization links at 
the immediately lower metamodeling level; 

− Class inherits from Type; 
− Classes are either abstract (in italics) or they are not. For instance, the Type 

metaclass is abstract. Moreover, the Class metaclass has a Boolean attribute named 
isAbstract. This means that any instance of Class owns this attribute with a value 
among true or false. So, Type is an instance of Class3 with value true for this 
attribute. In terms of instantiation, one thus cannot construct a new metaclass4 as 
direct instance of Type. 
For conciseness, other key metaclasses (e.g., NamedElement), metaattributes (e.g., 

the name attribute inherited by Class from NamedElement) are ignored. Moreover, 
“hidden” features of the model in Fig. 1 are: 
− Class is an instance of itself. In the four-layer metamodel hierarchy of UML (M3 

to M0), a Class element at the M2 level is an instance of a Class element at the M3 
level. There are no reasons to distinguish between M2::Class and M3::Class. 
Conceptually, they are the same (same set of features especially). Accordingly, we 
consider the existence of an Instantiation link from Class to itself. 

− The Type and Property elements are instances of Class; 
− isAbstract in Class at M3 is an instance of Property at the immediately upper level 

with isComposite = true. So, isAbstract is semantically equivalent to a composition 
relationship from Class to Boolean with the 1..1 cardinality and the isAbstract role 
both being next to Boolean. 

− isComposite in Property is an instance of Property with isComposite = true; 
− The Composition link from Class to Property is an instance of Property with 

isComposite = true (for brevity, some original attributes of Property are omitted); 
− The Association link from Class to Class (superClass role) is an instance of 

Property with isComposite = false; 
                                                             

2 This association materializes direct inheritance, i.e., it does not represent all of the super 
classes of a class (transitive closure). 

3 This Instantiation link does not appear in Fig. 1. In common practice, links that cross 
metamodeling layers are omitted. 

4 While Type belongs to the M3 level, such a hypothetical metaclass would belong to the M2 
level. 



− Finally, the Generalization link (i.e., inheritance) from Class to Type is an instance 
of the Association link from Class to Class. 

2.1   Inductive definition of Class and Property 

In this section, Class and Property are introduced as Coq types while BBoolean, 
CClass, PProperty and TType are UML concepts (i.e., Coq constants). It is also 
shown that Class, Property and NonAbstractClass5 are mutually dependent types. 
Inductive Class : Type := 
    BBoolean | (* UML Boolean type *) 
    CClass | 
    PProperty | 
    instantiate : NonAbstractClass -> Property -> 
Property -> Class | 
    inheritsFrom : Property -> Property -> Property -> 
Class 
with Property : Type := 
    Null | (* Null is introduced in [7, p. 11] *) 
    set_isAbstract : Property | 
    set_isComposite : Property | 
    set_ownedAttribute : string -> Class -> nat -> nat 
-> Property -> Property | (* Expected order: attribute 
name, attribute type, lower bound, upper bound, 
isComposite or not *) 
    set_superClass : Class -> Property (* Inheritance 
*) 
with NonAbstractClass : Type := 
   instantiate' : Class -> NonAbstractClass. 

2.2   Metanavigations 

The definition of metanavigations is straightforward. For example, ownedAttribute in 
Fig. 1 is specified as an ordered list of Property objects: 
Definition ownedAttribute(c : Class) : list Property := 
match c with 
  | CClass => cons (set_ownedAttribute isAbstract_label 
BBoolean 1 1 set_isComposite) nil 
  | PProperty => cons (set_ownedAttribute 
isComposite_label BBoolean 1 1 set_isComposite) nil 
  … (* other constructors here*) 
  | _ => nil (* remaining cases *) 

                                                             
5 This type is introduced for preventing abstract classes are to be instantiated. 



end. 
So, by construction, computing the expression ownedAttribute CClass leads to a 

one-element list: its isAbstract attribute (see Fig. 1). 

2.3   Constructing new metaclasses 

The generative nature of the above specification allows the creation of other core 
concepts through different protocols. For example, instantiating a Coq Class object 
(that is equivalent to a UML CClass object): 
Definition Object : Class := instantiate (instantiate' 
CClass) Null Null. (* [7, p. 15] *) 
Here, the first Null occurrence means that Object coming from the UML kernel is 

not abstract while the second means that it has no “owned attribute” (note that 
simplified instantiate methods may be easily provided to avoid using Null). 

2.4   A formal version of the UML «instanceOf» relationship 

To solve the problem of assigning a mother class to CClass (meta-circularity), we 
specify the recursive class function over the Class inductive type: 
Fixpoint class(c : Class) : Class := match c with 
| instantiate (instantiate’ c’) _ _ => c’ 
| inheritsFrom (set_superClass super) _ _  => class 
super 
| _ => CClass (* BBoolean => CClass | CClass => CClass 
| PProperty => CClass *) 
end. 
Consequently, the UML «instanceOf» relationship can be easily derived from the 

class above function as follows: 
Inductive instanceOf(c’ : Class) : Class -> Prop := (* 
e.g., instanceOf CClass Object *) 
def : forall c, c’ = class c -> instanceOf c’ c. 
In Coq, predicates using recursive constructions (def constructor above) may also 

be inductively defined. 

3   Proven metamodel infrastructure for UML 

3.1   Metaness 

Kühne lays down the principle of composition of the class function for expressing 
metaness. Metaness is viewed “as a two-level detachment of the original”. 



In Coq, we pose the possibility of recursively computing the metaiclass of any 
UML element e for any natural number i with meta0class e = e and meta1class e = 
class e. The i index materializes levels in metamodeling. 
Fixpoint metaness(n : nat) (c : Class) : Class := match 
n with 
| 0 => c 
| S m => class (metaness m c) (* S m is the successor 
of m for natural numbers in Coq *) 
end. 
So, metaness 0 c is the c entity itself while metaness 1 c is the direct class c. 

metaness 2 c is the class of the class of c, namely the metaclass of c, etc. An 
interesting lemma to be proven is, when n is not equal to 0, c = metaness n c is only 
possible when c = CClass: 
Lemma Metaness_majorant : forall c : Class, forall n : 
nat, n <> 0 -> c = metaness n c -> c = CClass. 

3.2   Metaness acyclicity, antitransivity and level-respecting 

    
Fig. 2. Metaness acyclicity (left hand side) and antitransitivity (right hand side). 

The proof of metaness acyclicity is based on the following Coq theorem: 
Theorem Metaness_acyclicity : forall c c’ : Class, 
forall n : nat, c <> CClass -> c’ = metaness n c -> c 
<> class c’. 
This rule is illustrated through Fig. 2. A proof by contradiction is necessary to 

justify this theorem (for conciseness, we hide Coq tactics). We imagine the absurd 
consequence that c = class c’. If so, from the initial assumption c’ = metaness n c (c 
<> CClass), we are able to write: 
class c’ = class (metaness n c) 
c = metaness (S n) c (* absurd hypothesis is used *) 
From the inductive specification of the nat type in Coq, we know that S n <> 0. 

From the Metaness_majorant lemma, we conclude that c = CClass. This result is in 
contradiction with our initial hypothesis part: c <> CClass. So, c = class c’ is absurd. 



The final conclusion is therefore: c <> class c’. In other words, this paper’s 
specification of metaness is acyclic as advocated by Kühne in [3]. 

The proof of metaness antitransitivity (Fig. 2) is based on the following Coq 
theorem: 
Theorem Metaness_anti_transitivity : forall c c’ : 
Class, forall n : nat, c <> CClass /\ n >= 2 -> c’ = 
metaness n c -> c’ = class c -> c’ = CClass. 
The proof of level-respecting is based on the following Coq theorem: 
Theorem Level_respecting : forall n m : nat, (exists c 
: Class, exists c’ : Class, c <> CClass /\ c’ = 
metaness n c /\ c’ = metaness m c) -> n = m. 

4   Related work 

There are two general-purpose categories of research works that stress the weakness 
of UML. In [9] for instance, the authors use conceptual graphs to re-formalize the 
Class (renamed Node in the proposed formalization), Association (renamed Link) and 
Specialize6 (renamed super) metaelements. An interesting point in this contribution is 
the introduction in the foreground of the Instantiation relationship through a meta 
predicate. The paper offers conceptual graphs as a set of first order predicates 
including the specification of meta-circularity as follows: 
[NODE:NODE]->(meta)->[NODE:NODE] (* [t:i] means i of 
type t *) 
This pioneering work also introduces the sem predicate (instanceOf inductive 

predicate above) as the counterpart of the meta predicate. However, no proofs are 
offered to show that these two constructions are mutually consistent, even though it is 
written: “The sem relation is derived from the meta relation.” The Instantiation 
relationship is recursively defined without termination capabilities:  
[LINK:meta]->(meta)->[NODE:LINK] 
One observes that this specification is not generative in the sense that there is no 

bootstrapping: meta is an instance of Association which is an instance of Node. 
Another paper inspired by a graph theory is [10]. Authors propose the introduction 

of a formal semantics that in particular crosses over all diagram types. More 
ambitious works [8] [11-12] consider the pure invention of a metamodeling 
framework (even theory) and/or a dedicated language (e.g., MML in [8]). For 
example, Paige et al. in [12] benefit from using another automated prover (PVS). 
They demonstrate how models may be accordingly checked in an Eiffel-like fashion: 
invariants, pre-conditions and post-conditions are kept in PVS to limit Eiffel as a 
formal language only. 

                                                             
6 This metaclass has been removed from the last versions of MOF and UML. 



5   Conclusions and perspectives 

From version 1.1 in 1997, the overall UML metamodel has undergone many changes. 
However, the current formalization (metamodels expressed in the Entity/Relationship 
paradigm along with OCL constraints, i.e., well-formed rules) has not gone beyond 
the set theory. Based on this style, precise metamodeling does not preclude from 
having rules that contradict each other, that create overlapping or that are silent on hot 
topics. The latter issue may be illustrated by the absence of a formal semantics of the 
Composition relationship in UML. 

This paper’s research seeks to be faithful to the original UML spirit. As much as 
possible, we intend to avoid any restructuring of the existing dependencies between 
metaconcepts. However, as shown in Section 4, new constructs seem useful to move 
from precise metamodeling to formal metamodeling. In this scope, constructive logic 
and Coq are powerful helpers. 
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