
Energized State Charts with PauWare
Franck Barbier

Univ. of Pau, France
BP 1155

64013 Pau CEDEX
Franck.Barbier@FranckBarbier.

com

Olivier Le Goaer
Univ. of Pau, France

BP 1155
64013 Pau CEDEX

olivier.legoaer@univ-pau.fr

Eric Cariou
Univ. of Pau, France

BP 1155
64013 Pau CEDEX

Eric.Cariou@univ-pau.fr

ABSTRACT
Persuading software engineers to systematically use on a
large scale, a modeling language like SCXML greatly
depends upon suited tools. At the very end, only financial
concerns prevail: productivity increases due to modeling.
Otherwise, modeling stops. This paper comments on
PauWare, a Java technology that aims at ameliorating the
daily practice of State Chart modeling. Beyond design,
PauWare is based on models@runtime to continuously
benefit from models when applications are in production.

Author Keywords
Model-Driven Development; State Charts; Executability.

ACM Classification Keywords
D. Software; D.2 SOFTWARE ENGINEERING; D.2.2
Design Tools and Techniques.

General Terms
Design.

INTRODUCTION
Since the takeoff and development of Model-Driven
Development (MDD) in the spirit of the Unified Modeling
Language (UML), modeling take-up remains fairly low.
From experience in software industry, mental blocks
persist. Developers rather prefer coding than modeling.
Being graphical and/or textual, the situation is the same for
all kinds of models; accordingly, modeling techniques are
still often considered as supports for only producing
software documentation.

The reason is “abstraction”. Even though abstraction allows
sound design principles like “separation of concerns”,
“incrementality” or “early design error detection”, it is also
“far from the processor”. Latest software tuning is often
incompatible with “idealistic worlds” in models. Over time,
models and code diverge, leading developers to throw
models overboard as soon as possible.

As a modeling language, SCXML spreading may stumble
over these well-known “hurdles”. The quality of

surrounding well-integrated tools (editors, checkers,
simulators, code generators…) plays then a crucial role for
the success of a modeling language. For example, Eclipse
Modeling Framework (EMF) [1] has made UML
manageable in XML (declarative aspects) and Java
(imperative statements as model transformations). In
another style, Yakindu (statecharts.org) for State Charts
allows model simulation and code generation. Both tools
are actual proofs about moving models one step beyond:
models benefit from being executable (or “interpretable”).
Nonetheless, this idea is not new. In [2] or [3], the intention
to offer an executable UML or a definitive virtual machine
for the overall UML does not result in something tangible at
this time.

This paper presents the PauWare engine Java library
(PauWare.com) to design ordinary software applications
from executable State Charts. From the origin, this library
obeys to the execution semantics of UML (with safe
homemade corrections), which is, in our opinion, very close
to that of SCXML. Regarding theoretical concerns,
PauWare engine is a research prototype mainly used for
carrying out experiences in software adaptation [4].
Otherwise, the two key industrial realizations from
PauWare engine are the implementation of a service
mediator in the ReMiCS project (remics.eu) and a model
debugger in the BLU AGE® MDD tool suite (bluage.com).

This paper discusses long experience and practice in State
Chart modeling with concise consideration on associated
tools, industrial usages, feelings and feedbacks as well on
the high necessity of models with greater attractiveness and
power of conviction.

REVISITING MDD
Over years, despite a certain know-how engraved in
PauWare engine, it is still difficult to convince people to
switch from prehistoric coding practices to relevant
standards like SCXML. Open proven Computer-Aided
Software Engineering (CASE) tools are important to
guarantee progresses. In this context, code generation from
SCXML models to PauWare engine API continues to raise
a squaring-the-circle problem: the gaining of SCXML
models is above all an often sizeable modeling effort,
especially when requirements are numerous and complex,
leading to labyrinthine State Charts. In other words, CASE
tools cannot be substituted for human intelligence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’15 SCXML workshop, June 23, 2015, Duisburg, Germany.
Copyright 2015 ACM 978-1-4503-1015-4/12/05...$10.00.

State Chart execution with PauWare engine or direct
interpretation with tools like Commons SCXML
(commons.apache.org/scxml) supposes the prior nontrivial
design of complete and ready-to-use SCXML models.
Similar to code writing, modeling is error-prone with
limited possibilities of testing intermediate designs.

To address these issues, the key idea is to give more latitude
to software engineers in seamlessly navigating between
models and code. Namely, “hiding” modeling activities can
be a sound design principle. Concretely, once PauWare
engine API under control, software engineers can express
State Charts in Java with a very reduced set of
classes/interfaces that easily and straightforwardly manage
compound/leaf states, state machines and any kind of
structuring: state nesting, state exclusiveness, state
orthogonality, transitions, guards and actions. Other
constructs of PauWare engine API are linked functions
(“fires” and “run_to_completion” essentially).

In fact, there is no great distinction about dealing with
SCXML or PauWare engine. Code generation may produce
PauWare engine API code from SCXML source. SCXML
models may also be derived from PauWare engine API
code.

For example, here is a SCXML source sample extracted
from the reference Barbados Crisis Management System
case study (franckbarbier.com/PauWare/BCMS). States are
in blue while events are in red:
<state id="Route_for_fire_trucks_development"
initial="Route_for_fire_trucks_to_be_proposed">

<final id="End_of_route_for_fire_trucks_development"/>

<state id="Route_for_fire_trucks_approved"/>

<state id="Route_for_fire_trucks_to_be_proposed">

<transition event="route_for_fire_trucks"
target="Route_for_fire_trucks_fixed"/>

</state>

<state id="Route_for_fire_trucks_fixed">

<transition event="FSC_agrees_about_fire_truck_route"
cond="In(‘Route_for_police_vehicles_approved’)"
target="End_of_route_for_fire_trucks_development"/>

<transition event="FSC_agrees_about_fire_truck_route" cond="!
In(‘Route_for_police_vehicles_approved’)"
target="Route_for_fire_trucks_approved"/>

<transition event="FSC_disagrees_about_fire_truck_route"
target="Route_for_fire_trucks_to_be_proposed"/>

</state>

</state>

The corresponding PauWare engine code is as follows:
state_machine.fires(route_for_fire_trucks,
Route_for_fire_trucks_to_be_proposed, Route_for_fire_trucks_fixed);

state_machine.fires(FSC_disagrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, Route_for_fire_trucks_to_be_proposed);

state_machine.fires(FSC_agrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, End_of_route_for_fire_trucks_development,
this, "in_Route_for_police_vehicles_approved");

state_machine.fires(FSC_agrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, Route_for_fire_trucks_approved, this,
"not_in_Route_for_police_vehicles_approved");

In this Java code, transitions are simply connected to source
and target states. Events are later processed as follows:
public void route_for_fire_trucks() throws Statechart_exception {

state_machine.run_to_completion(route_for_fire_trucks);

} // Etc. Other events here…

As for SCXML conditions:
public boolean in_Route_for_police_vehicles_approved() throws
Statechart_exception {

return
state_machine.in_state(Route_for_police_vehicles_approved.name());

}

Figure 1. PauWare view look & feel (extract from Barbados Crisis Management System).

Testing through simulation at design time in particular
relies on a third-party tool: PauWare view. PauWare view is

an addon for PauWare engine. PauWare view dynamically
generates one or more instances of State Charts in SVG

format by taking advantage of the PlantUML Java library
(plantuml.sourceforge.net). PauWare view displays and
simulates instances of State Charts in Web browsers in an
asynchronous way (Figure 1). Any PauWare engine
application communicates through Web sockets the
discretized status of some or all of its running state
machines. This logically results from the processing of
event occurrences in run-to-completion cycles. Since
applications have their own event processing frequency (for
instance, a highly interactive application may be “bombed”
by event occurrences), PauWare view acts as a buffer for
displaying these occurrences in a human readable manner
(refreshes are adjustable between 1 sec. and 5 sec.).

MODELS@RUNTIME
Even though PauWare view can be rightly viewed as a
model testing tool at design time, its main purpose is run-
time observation, even control in case of adaptation. The
animation of State Charts by means of PauWare view in
Web browsers is more than the simulation of models in the
sense that these models are abstract software artifacts. Here,
“abstract” precisely means that models mimic the grand
characteristics of the final software, but all low-level details
are not yet presented.

Instead, PauWare view is plugged in the application in
production with, often, end-users being the source of event
occurrences through GUIs. Running state machines may
possibly be embedded in devices with system-oriented
events (e.g., battery events in an Android application [5]) or
they can power Enterprise JavaBeans (EJBs) in large-scale
SOA applications.

Keeping or not PauWare view at run time is a question of
application administration in the spirit of the Java console.
The latter aims at tracing, even controlling, operating
applications. In all cases, cutting PauWare view off from
PauWare engine is no effort. Performance issues for
example may justify such a cutting even though PauWare
view may run on other machines thanks to Web sockets.

Models@runtime [6] is the major source of inspiration for
PauWare technology. No significant distinction is made
between coding and modeling. Modeling is just disciplined
coding to create higher intelligibility in the code by means
of persisting models. Consequence is higher software
quality, but nothing new under the sun: these are just
software engineering entrails, i.e., maintenability,
reusability and reliability naturally increase.

WEAKNESSES
• With the exception of Java, there is no devoted

mechanism in PauWare engine to write the bodies
of actions launched in reaction to events or as
entry/exit actions of states. The same applies for
guards that are embodied by Boolean Java
methods (see above). SCXML has a rich and
relevant language-neutral approach with
ECMAScript or, instead, by offering varied

supports for different programming languages.
Actions in PauWare engine stress data
transformations in avoiding any control flow,
which, in essence, is under the aegis of State
Charts.

• PlantUML has drawing restrictions in the sense
that it is not able to manage arrows (i.e.,
transitions) that cross, from inside or outside,
container states. PauWare engine does not have
this embarrassing limitation, which confines
PauWare view to specific forms of State Charts
only. As an illustration, Figure 2 shows a model,
which cannot be simulated at design time (and,
mechanically, controlled at run time).

Figure 2. State Chart with numerous factorized transitions

from/to superstates to/from substates.

The model in Figure 2 is simply and directly
expressible in SCXML apart from proprietary
UML constructs: “do/” UML notation for activities
and state invariants between brackets (both are
supported by PauWare engine). At run time,
PauWare engine seamlessly executes the model in
Figure 2, but, again, no behavior visualization is
possible through PauWare view.

This problem can be bypassed with alternative
PlantUML-compliant models having the same
business semantics, but such models tend to
accidentally become more complicated. Beyond,
such an approach is dubious because tools serve
modeling. It would simply be erroneous to
envisage anything else.

• PauWare prompts software engineers to become
model supporters with a kind of “extreme
modeling” style. Indeed, “Write little matter-
Compile-Test” is the rule in extreme
programming: in short, tests drive development.
However, such an approach is not unanimously
known as a proven productive software
development method when several stakeholders

are involved. A debatable question is the fact that
MDD is recognized (or not?) as disruptive with
respect to “ordinary” software development
practices. Breaking requirements and
specifications into modular pieces is normally
favored by modeling. State Charts have intrinsic
characteristics for being these pieces. This debate
is outside the scope of this paper, but it is
interesting to point out that State Chart expression
is systematically preceded by an upstream
significant modeling activity that is not readily
aligned with PauWare design style.

STRENGTHS
• Distribution through Web sockets allows the

remote run-time observation, even control (or self-
control in case of self-adaptation [4]) of PauWare
engine applications everywhere. Fruitful
experiences relate to the Java Embedded
technology. Running state machines are
embeddable as a System on Chip (SoC) using, for
instance, the Raspberry PI hardware. State Chart
behavior visualization then becomes extremely
informative for electronic/software engineers who
have experience in only having “physical”
perceptions of the SoC’s behavior in a given real-
word context. With reasonable effort, hardware-
oriented events can be “mounted” on models
animated in Web browsers.

• Without escape routes, crowded State Charts (due
to challenging requirements) are both natural and
difficult to read (to understand accordingly).
PauWare view efficiently addresses combinatory
issues. There is a kind of roundtrip engineering
between code and (visualized) State Charts that are
two distinguished viewpoints of the same thing.
Typically, the suppression of useless model
complexity often leads to code
compaction/rationalization. Practice shows that the
divergence between code and models in
“traditional” MDD does not occur here.

• As already mentioned, models@runtime constitute
an underlying appropriate support to keep control
on running applications. For example, “runtime
mutation” is recognized useful in [7] for
debugging State Charts. Usually, code arises from
specifications. Here, State Charts may derive from
Java code and vice-versa. There is no effective
upstream/downstream dependency between the
two. PauWare view for example is able to take
snapshots of (at rest or active) State Charts for
software documentation production: a kind of
“upside down software engineering”.

CONCLUSION
In our opinion, compared to UML, SCXML succeeded in
only keeping the true substance of the original Harel’s
Statecharts. In this paper, we defend the idea that a bi-layer
approach is wrong. We mean: the classical MDD cycle in
which code comes into being from models and code is,
later on, enhanced with implementation details (i.e.,
platform-specific information) that, in essence, do not
belong to models because of their abstract nature, is a
strong factor of MDD weakening and consequential
rejection. A renewed MDD is possible if and only if models
and code share a better articulation as offered by PauWare.

In this scope, the evolution of Commons SCXML is quite
sound with the principle of an “expression language
engine” in charge of parsing and evaluating imperative
statements (typically, action bodies between the <script>
and </script> tags). The possibility of using Groovy for
instance as this expression language allows the controlled
mixing of code and models as done in EMF, Commons
SCXML, PauWare and, probably, forthcoming modeling
environments.

ACKNOWLEDGMENTS
PauWare has been partly funded by the European
Commission. All authors gratefully acknowledge the grant
from the European Commission through the ReMiCS
project (remics.eu), contract number 257793, within the 7th
Framework Program.

REFERENCES
1. Steinberg, D., Budinsky, F., Paternostro M. and Merks,

E. EMF - Eclipse Modeling Framework, Second
Edition. Addison-Wesley, 2008.

2. Mellor, S. and Balcer, S. Executable UML – A
Foundation for Model-Driven Architecture. Addison-
Wesley, 2002.

3. Riehle, D., Fraleigh, S., Bucka-Lassen, D. and
Omorogbe, N. The Architecture of a UML Virtual
Machine. Proc. 2001 Conference on Object-Oriented
Programming Systems, Languages, and Applications,
ACM Press (2001), 327-341.

4. Barbier, F., Cariou, E., Le Goaer, O. and Pierre, S.
Software adaptation: classification and case study with
State Chart XML. IEEE Software, in press (2015).

5. Le Goaer, O., Barbier, F., Cariou, E. and Pierre, S.
Android Executable Modeling: Beyond Android
Programming. Proc. 2014 International Workshop on
Mobile Applications (2014).

6. Blair, G., Bencomo, N. and France, R.
Models@run.time. IEEE Computer 42, 10 (2009).

7. Junger, D. Transforming a State Chart at Runtime. Proc.
Engineering Interactive Systems with SCXML Workshop
(2014).

