A generic solution for weaving business code into executable
models

Eric Cariou
Olivier Le Goaer
Léa Brunschwig

Franck Barbier
Univ Pau & Pays Adour
Laboratoire d’Informatique de I’'Université de Pau et des Pays de I’Adour, EA3000
PAU, France
firstname.lastname@univ-pau.fr

ABSTRACT

The separation of concerns is a fundamental principle that allows
to build a software with separate parts, thereby improving their
maintainability and evolutivity. Executable models are good poten-
tial representatives of this principle since they capture the behavior
of a software-intensive system, that is, when, why and how calling
business operations, while the latter are specified apart. EMF is the
de facto framework used to create an executable DSL (xDSL) but a
solution to weave business operations into it is still missing. This
is compounded by the fact that such business operations can be
tied to specific technological platforms that stand outside the EMF
world (e.g. Android SDK). To that purpose, in this paper we describe
a solution for managing business operations both at design-time
(creation of executable models with EMF) and at run-time (oper-
ation calls from the deployed execution engine). This solution is
generic enough to be integrated into any Java-based environment
and for any xDSL.

KEYWORDS
Executable DSL, Xmodeling, operational semantics, CASE tool, EMF

1 INTRODUCTION

Executable modeling (Xmodeling) is receiving increasing atten-
tion, and hence creation of Executable Domain Specific Languages
(xDSL) is centerstage. Executable models can be used for simula-
tion purpose with mock data and operations, but they may also be
deployed onto real devices. In that case, the formalism of the DSL
captures the behavior of a system, while an embedded execution
engine is responsible for the proper call of business-level operations
(APIs) provided by the targeted platform.

For example, each elevator has its own firmware responsible for
opening and closing doors, winding/unwinding the cable to reach a
given floor. The actions of the elevator may be triggered according
to a set of states and transitions preferably modeled through a finite
state machine formalism. As another example, a travel booking
system running on a server inserts customers information into a
database or call Web services provided by air transport companies.
The behavior of such a system specifies when these business rou-
tines have to be executed and under what conditions. The calls to
the various Web services may be orchestrated through a BPEL or
BPMN formalism.

However, a problem arises when using and creating an exe-
cutable DSL (xDSL) for using such executable models: the data flow
management. Writing a piece of code in a classic way consists in
weaving a control flow with a data flow. Let’s consider these basic
lines of Android-inspired Java code:

Cursor sms = smsManager.getAlISMS ();
String json = cloudManager.cursor2JSON (sms);
cloudManager.save (json);

The first line of code retrieves all the SMS stored into the smart-
phone. Then, this set of SMS is passed as parameter to a second
method converting them into a neutral JSON format. Finally, in
the last line of code, this JSON contents is saved in a Cloud. The
control flow consists here in the definition of the sequence of the
method calls and on which object they are called (here smsManager
or cloudManager). The data flow consists in passing parameters to
the methods and getting the resulting objects that could be further
parameters of other methods. Here for instance, the object named
"sms" is obtained by the first method call and passed as parameter to
the second method. Of course, depending on the business methods,
the number and type of parameters can vary as needed.

As an example of xDSL for applying our solution for managing
business operations, we have defined a simple DSL using EMF: PDL
for Process Definition Language. A process is composed of a set
of ordered activities. The idea is that business operations can be
associated with each activity. For our Android example, this will
lead to define a PDL model with a sequence of three activities, one
for each line of code. From now on, the control flow is reified in the
form of a PDL model and the software engineer is only in charge of
implementing the business operations. This is the execution engine
of PDL that will carry out the complete execution of the model:
once the business operation of an activity is finished, it goes to the
next activity and executes its business operation and so on till the
end of the process.

However, an important problem remains: how to define the data
flow? How does one set for an activity which is the operation to be
called, on which Java business object and with which parameters?
How does one store the result of an operation to reuse it afterward
as a parameter of the operation of another activity? This problem
is not specific to our PDL language but is a recurrent problem
when defining xDSL where executable elements are associated
with business-level operations. In this paper, we propose a generic

EXE 2018, October 14, 2018, Copenhagen, Denmark

solution for managing a data flow during the definition of any xDSL.
It is composed of a set of meta-classes that can be added in any
Ecore metamodel to define a data flow and a set of EMF Java classes
that are used to define the execution engine thereof and that will
manage automatically the execution of business operations. This
solution is delivered as an Eclipse/EMF plugin called Xmodeling
Studio !.

We took Android as an example because development of an
Android application requires the Android SDK and the Android
Studio IDE, and it can certainly not be achieved in Eclipse/EMF. In
this paper, we describe the integration of the execution engine of a
xDSL defined with Xmodeling Studio and how to use its executable
models in any Java-based development using any IDE. We are
convinced that being able to push xDSL and models into mainstream
software development (independently of Eclipse/EMF) can lead to
a wider adoption of MDE.

The rest of this paper is organized as follows. In Section 2 we
describe how a language engineer implements a xDSL, its meta-
model and execution engine, using Xmodeling Studio. In Section 3,
we explain how a software engineer uses the xDSL defined in any
Java development. Before concluding, we discuss related work in
Section 4.

2 DEFINITION OF A XDSL

In this Section, we explain how a language engineer can create a
xDSL using Xmodeling Studio with associated business operations.
As an example, we first define PDL which Ecore meta-model is
depicted on Figure 1. Roughly, a process is composed of a set of
activities, has a first and a last activity, and all these activities are
ordered through their next/previous references. The reference
currentActivity in Process enables to know which is the current
active activity when the model is interpreted by the engine. The
meta-classes Xmod_Action and Xmod_Operation (in green) are not
part of the PDL definition. They are meta-classes automatically
added by Xmodeling Studio for managing business operations as
we explain in the following.

2.1 Meta-classes

The main idea is at run-time to tag the Java objects that will be
either parameters or return values of business methods and also
the objects on which the methods are called. The pairs tag/object
are then put in a Java map (java.util.Map) that will be used by
the execution engine to retrieve the objects, as we will see in the
following.

A business operation (i.e. a plain Java method in the code) is
defined with the meta-class Xmod_Operation. It has a method name,
a set of parameters, a possible return value and the object on which
it will be executed. This information (excepting the method name)
corresponds to the tags of the Java objects in the map.

The meta-class Activity from PDL metamodel specializes Xmod_-
Action. This is how the business operations are added on meta-
elements. We have leveraged the semantics of UML state machines
for associating business operations as for an UML state: on entry,
on exit and the do action. For almost all xDSL, the execution se-
mantics consists in activating elements and deactivating other ones:

I The tool is available at this address: http://www.pauware.com/xmodeling

E. Cariou et al.

from a state to another one when following a transition, from an
activity to the next one when the current activity is finished...So,
these notions of entering and exiting an element can be generalized
to any xDSL. The three operations are optional. However, if one
does not want to follow our pattern, the operations link between
Activity and Xmod_Operation enables to add operations and to
execute them as desired within the execution engine.

The link between our generic meta-classes and those of an Ecore
metamodel can be made in two ways with our Eclipse plugin. If
you have an existing metamodel, you have to annotate some meta-
classes: by "Xmod_main" for the root element of the Ecore meta-
model (that will help in the code generation as explained further)
and by "Xmod_action" for elements that need to specialize Xmod_-
Action. Then, you launch a metamodel-to-metamodel transforma-
tion that will add our generic meta-classes at the right place in your
metamodel. If you want to build a brand new xDSL, you create an
"Empty Xmodeling project". This will create an EMF project with
an Ecore metamodel containing our generic meta-classes. In both
cases, in the "src-gen/" directory of the EMF project, the EMF code
of our meta-classes will be placed including the built-in code for
automatically executing business operations.

2.2 Execution engine

We provide the implementation of the EMF Java classes with the
code that will automatically execute business operations. The main
part of this implementation is the execute method of Xmod_Ope-
ration. Based on the tags, it first retrieves in the map the objects
that will be the parameters of the method and also the object on
which the method has to be called. Based on these objects and the
method name, a dynamic call of the method is made trough the
reflection mechanism of Java. If the method returns a value, it is
put in the map with the right tag.

An utility class is also automatically generated for managing the
map and the models. It is put for our example in the EMF generated
PDL.util package and is called "PDLXmodUtil". This class contains
static Java methods for:

e Loading a model and getting its root element, based on the
"Xmod_main" annotation put on one meta-class of the meta-
model. In our example, this annotation has been put on the
Process meta-class, so the generated method will have the
following signature:

Process loadProcess(String fileName)

e Saving a model through a root element, here again based on
the "Xmod_main" annotation

o Getting and setting the object map

e Loading and saving the in-memory object map through an
XML file

During the execution, saving the model and the map allows to
save the complete current state of this application: both its behav-
ioral state and the current contents of the business objects. It can
be used to build an execution trace that can be afterwards analysed
or to reload and restart the application at a given point in time.
However, depending on the size and number of the Java objects in
the map and on the size of the model, such loading and saving can
be heavy-load operations and then should be used sparingly.

http://www.pauware.com/xmodeling

A generic solution for weaving business code into executable models

H ¥mod_Operation

o name : EString

T objectTag : EString

&% parametersTag : EString
o returnTag : EString

EXE 2018, October 14, 2018, Copenhagen, Denmark

H Process

{? executeProcess(

- [1..1] start
@ execute] B Pseudostate (o
[0..1] onEntry [0.1] chDo
B [0..*] cperation
0} 1] onbxft [1..1] reference

B Xmod_Action | T |
@ onEntry]
& onExit] B End | | B star
@ onDo{

[1..1] end
B Activity [1..%] activities
7 label : EString [0..1] currentActivity

T name : EString
7 methodName : EString
(? notinMext{act Activity) : EBoolean

‘: [0..1] next

[0..1] previous

Figure 1: Ecore metamodel of PDL

Thanks to this generic code, the implementation of the execu-
tion engine for PDL is straightforward. It consists mainly in imple-
menting the executeProcess method of Process within the EMF
generated code:

public void executeProcess() {

// get the first activity of the

Activity act = this.getStart (). getReference ();
do {

// update the

this.setCurrentActivity (act);

/ of

process

current activity

the
our implemented methods of

execute the
// defined by calling
Xmod_Action that Activity is
act.onEntry ();
act.onDo();
act.onExit ();
/ go to next activity
act = act.getNext();
end the loop if there is
while (act != null);

operations activity if

specializing

the

no further activity

—

3 IMPLEMENTATION OF A SOFTWARE WITH
A XDSL

3.1 Business code and executable model

Once the language engineer has released its xDSL, any software
engineer can used it to create a software. He/her has to provide
an implementation in Java for the business operations (getA11SMS,
cursor2JSON and save for our Android example). This develop-
ment can be made in any Java environment. Then, using EMF,
he/she defines the executable PDL model. If using a textual syntax

created with Xtext?, it will give the model of the Figure 2.b for our
Android example. It defines a sequence of three tasks each one as-
sociated with one business operation (on entry for the two first and
on do for the last one). The "on" enables to express on which object
(its tag) the operation will be called, "result" the tag of the returned
object of the operation. We can notice the tag "allSMSContent"
is the result of the operation of the first activity and is passed as
parameter for the operation of the second one. In the same way, the
result of the second activity tagged "json" is passed as the parameter
of the operation of the last activity. This way, the data flow among
activities is automatically managed and our generic implemented
EMF Java classes will manage the Java objects at run-time through
their tags.

For the software engineer building a business application, once
its PDL model defined, he/she has to write a code that will initialize
the contents of the map and then launch the process execution. For
instance, for our small example, it will be something like this:

the contents of the map with business

/ objects on which methods will be called

HashMap<String , Object> map = new HashMap < >();

SMSManager smsManager = new SMSManager (...);

CloudManager cloudManager = new CloudManager (...);

map. put("sms", smsManager);

map. put("cloud", cloudManager);

// load the of the PDL model through our
generated

Process proc;

PDLXmodUtil.loadProcess ("SMSBackupWorkflow . xmi");

class

create initial

contents
utilitary class
proc =

set the map through our

PDLXmodUtil . setMap (map) ;

generated utilitary

2This concrete syntax has not yet been implemented for PDL. Currently, the PDL
model is created using the EMF generic XMI file editor as presented on Figure 2.a.

15

EXE 2018, October 14, 2018, Copenhagen, Denmark

4 SMSBackupWorkflow.xmi &
v & platform:/resource/PDL/model/SMSBackupWorkflow.xmi
v 4 Process
v + Activity t1
+ Xmod Operation getAllSMS
v + Activity t2
+ Xmod Operation cursor2JSON
+ Activity t3
+ Start
+ End
& platform:/resource/PDL/model/PDL.ecore

“ Tasks O Properties 2

E. Cariou et al.

process {
t1 {
label "Get all SMS"
call as entry getAl1SMS on sms result allSMSContent

t2 {
label "Convert Cursor to JSON"
call as entry cursor2JSON(allSMSContent) on cloud result json
} next of t1

Property Value
Label = Convert Cursor to JSON 3 {
Method Name = cursor2JSON label "Backup in Cloud"
Name 2 call as do save(json) on cloud
Next = Activity t3 } next of t2
Previous = Activity t1 }

(a) abstract syntax

(b) textual concrete syntax

Figure 2: PDL model for the Android application example

// execute the process: the operation of activities will

be automatically called by our generic meta—classes
/ and the data flow is managed by the tags in the map
proc.executeProcess ();

3.2 Deployment

Unlike EMF standalone deployment which is done typically export-
ing as RCP Application, we need a custom, minimal deployment.
Indeed, the interpreter has no graphical user interface: it is rather
an autonomous executable JAR, able to take XMI files as inputs;
provided they conform to the metamodel of the given xDSL. The
core libraries coming from EMF that must be isolated from the rest
are:

e org.eclipse
e org.eclipse
e org.eclipse
e org.eclipse

.emf.common. jar
.emf.ecore.xmi.jar
.emf.ecore. jar
.ocl.pivot. jar

In addition, the package of the ANTLR Parser generated by
Xtext can be embedded so that a concrete textual syntax is also
supported as input. The lightweight, low-dependency and low-
memory footprint criterion must drive the deployment phase so
that the interpreter is truly embeddable in tiny devices like Android
smartphones for example (the four above packages have a total
size under 5 MB and even under 2 MB without the OCL run-time
verification package).

As a proof of concept, we have successfully implemented a simple
Android application with Android Studio using PDL 3. It basically
requires to add in the project the EMF JAR files listed just above,

3Sources and technical details are available on http://www.pauware.com/xmodeling/
android-example.html

the JAR generated from the EMF classes for PDL including the code
of the PDL execution engine and of our generic code for managing
the data flow. The SMSBackupWork flow.xmi file has also to be
put in the project.

3.3 Discussion

At a glance, this way of programming is more complex and less
convenient than the classic way but this is due to the basic applica-
tion example and the choice of a minimalist metamodel as a xDSL
example. Our PDL simply executes one sequence of activities and
our Java example is a sequence of lines of code. Consequently, in
both cases, the behavior is reifed under the concept of sequence.
Then, the xDSL does not offer a more high-level and abstract way
to define the behavioral part of an application. But let’s imagine
an extension of PDL with parallel sequences and forks or joins
among them. In this case, writing by hand in Java an application
following this behavior (such as a method that must wait the end of
several parallel methods to be executed) will be a headache whereas
it will be straightforward and much quicker using the extended
PDL formalism as simply requiring to define a model. This high-
lights the interest of using xDSL for defining the behavior of an
application. Another benefit of such an approach is that changing
the behavior of the application is simply made by modifying the
model and does not require to change any line of Java code (except
business operations of course).

Using a map requiring to put in it all the objects used as pa-
rameters, return values and target objects of the business methods
seems to be fastidious. But if you are using coarse-grained business
actions, once the initialization of the business objects on which the
operations will be called is done and that they have been put in the

http://www.pauware.com/xmodeling/android-example.html
http://www.pauware.com/xmodeling/android-example.html

A generic solution for weaving business code into executable models

map, the data flow is automatically managed: results of activities
will mainly be the entries of other ones as defined in the high-level
executable model. It will not be necessary to put many other objects
in the map.

4 RELATED WORK

Several recent research initiatives have been launched to help in
building executable DSLs and associated tools. The GEMOC Stu-
dio [3] enables to define such DSLs with a lot of tooling features
for model edition, simulation, debugging, code generation, defi-
nition of execution engine... The GEMOC initiative has for goal
to integrate different features and works around implementation
at large of executable DSL. Melange [12] enables also to integrate
several DSLs together and to define an execution engine in Ker-
meta 3%, [5] and [4] provide generic approaches to add trace and
debugging features to any executable DSL. xMOF [15] allows to
defined for MOF-based DSL an execution semantics with fUML [18].
[20] is also using fUML for defining an execution semantics but for
UML profiles. Kermeta is an interesting language for developing a
xDSL: high-level executable code is added by aspect mechanisms
to meta-classes, making a clear separation between the structural
meta-model and the code manipulating the model. Then, Kermeta
can generate the equivalent Java code, that is, the running execu-
tion engine. All these works offer interesting and powerful features
which can be inspiring for our Xmodeling CASE tool but they do
not explicitly focus on the business part of the software application
to build as we do.

Of course business code can be integrated during the software
development and even legacy code when using these tools. For
instance, [11] merges existing DSLs using Melange for specifying
business and behavorial parts of an IoT (Internet of Thing) applica-
tion. But as the development of the final software is mainly based
on Eclipse/EMF, it can make difficult to reuse some existing frame-
works and can even make some developments almost impossible
as for Android applications.

[16] uses a middleware to make interacting a model execution
engine (called a virtual machine) for a xDSL with business services.
The description of the business operations is made through ded-
icated script controls whereas in our approach, there are defined
directly in the executable model and associated with executable
elements. Their approach deals also with advanced features such
as runtime adaptability based on context and available resources.
With Xmodeling Studio, we focus only on the execution engine
implementation and its link with business operations in order to
make it the most simple to integrate in any Java-based software
development.

fUML is used in previous citations as a language for defining the
semantics of a modeling language, i.e. at the metamodeling level,
but it has been released originally for defining the equivalent of
a programming code in UML models. One can then design for an
application the class diagrams, state machines, sequences diagrams
and any required diagrams and then add the contents of the class
methods in fUML either through a kind of activity diagram or
using a pseudo-code syntax thanks to ALF [17]. For instance, [13]
generates Java or C++ code from fUML specifications. The software

http://www.kermeta.org

EXE 2018, October 14, 2018, Copenhagen, Denmark

engineer can then add the business part of the application in the
UML models. It enables a 100% model development of a software
application which is somehow the holy grail of MDD. However in
this case, it is not possible to reuse existing code developed in a
standard programming language: everything has to be translated
under the form of UML diagrams and fUML code which is not
an easy task and is indisputably a brake on the use of these full-
modeling techniques.

At the complete opposite of these full-modeling approaches but
still in making a clear separation between the behavioral and the
business parts, there is a tool such as PauWare® [2]. PauWare is
both a Java library for "programming" UML state machines and an
execution engine for them. Developing with PauWare consists in
instantiating Java library classes for creating the states and tran-
sitions of the state machine and to associate with them business
actions coded through Java methods. With PauWare, everything is
directly defined in plain Java and using it simply required to add a
JAR file in the Java project of your favorite or required IDE. The
UML state machine is not defined with a modeling tool but is reified
under a set of instances of Java classes, that is, at a low level.

In this paper, we propose an intermediate and pragmatic ap-
proach where the behavioral part of an application is defined with
an executable model and the business part is defined by the soft-
ware engineer in plain Java. This allows him/her to reuse directly
existing code and to use the IDE he/she prefers or the one that is
required such as Android Studio when developing Android mo-
bile applications. We propose tools and techniques to glue these
behavioral and business parts together through automatic code
generation, for any executable DSL.

5 CONCLUSION

In this paper, we have presented a solution for weaving business
operations into executable elements of any xDSL. Inspired by the
semantics of UML state machines, business operations are associ-
ated with an executable element on entry (when it is actived), on
exit (when it is deactivated) and as a do action (when running). We
provide generic meta-classes for defining business operations that
can be automatically added to any meta-model. We also provide
boilerplate EMF Java classes for these meta-classes that contain a
generic code carrying out the automatic execution of the business
operations through the Java reflection mechanism and helping in
the implementation of the execution engine of a xDSL. At run-time,
the Java objects (business objects, method parameters or returned
values) are put in a map. Our generic code will access to this map
to get or set the required objects for an operation execution. This
enables to manage the data flow among operations while the con-
trol flow is reified within the executable model. This solution is
available trough an Eclipse/EMF plugin called Xmodeling Studio.
The originality of this solution is that it is mixing modeling and
programming for an easier integration of MDE into everyday soft-
ware developments within the Java ecosystem. Whilst defining a
xDSL for simulation does not required business code, for a concrete
software development where using existing API or legacy code is
unavoidable, the link between these business parts and the exe-
cutable model must be made. The xDSL created with Xmodeling

5 http://www.pauware.com

EXE 2018, October 14, 2018, Copenhagen, Denmark

Studio, more precisely their execution engines, can be deployed
independently of the targeted software or platforms: an Android
application, a Web server, a desktop application, an Arduino pro-
gram... This is due to the fact the executable model may reify any
kind of application behavior, independently of the business op-
erations required. They will be called by our generic EMF Java
classes.

As perspectives, we will continue the development of Xmodeling
Studio with new features. As well-established, an executable model
contains static and dynamic elements [6—10, 14]. Static elements
define the contents of the model (for PDL, the sequence of activi-
ties) whereas dynamic ones are used to manage the execution of
the model (here the currentActivity reference of Process allow-
ing to know which is the current activity under execution). The
static elements of the model must not been changed during the
execution: if you change the activities of a PDL model, you are
changing the behavior of your software. In some cases, it can be
considered for run-time adaptation [8, 19], but in most cases, it
will be an unexpected problem. Hence, we plan to control the code
written by the language engineer during the implementation of the
execution engine of his/her xDSL in order to avoid at run-time the
modification of the static elements of the executable models.

ACKNOWLEDGMENTS

The presented work is part of the MegaM@RT?2 project (Megamod-
eling at Runtime — Scalable Model-based Framework for Contin-
uous Development and Runtime Validation of Complex Systems)
[1] which has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking (ECSEL-JU)
under grant agreement No. 737494. This project receives support
from the European Union’s Horizon 2020 research and innovation
program and from Sweden, Spain, Italy, Finland & Czech Republic.

REFERENCES

[1] Wasif Afzal, Hugo Bruneliere, Davide Di Ruscio, Andrey Sadovykh, Silvia Mazzini,
Eric Cariou, Dragos Truscan, Jordi Cabot, Daniel Field, Luigi Pomante, and Pavel
Smrz. 2017. The MegaMRt2 ECSEL Project - MegaModelling at Runtime —
Scalable Model-based Framework for Continuous Development and Runtime

Validation of Complex Systems. In European Projects in Digital Systems Design

(EPDSD), Euromicro DSD/SEAA 2017.

Franck Barbier. 2016. Reactive Internet Programming — State Chart XML in

Action. the Association for Computing Machinery and Morgan & Claypool.

http://www.pauware.com.

[3] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien
Deantoni, and Benoit Combemale. 2016. Execution Framework of the GEMOC
Studio (Tool Demo). In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2016), ACM (Ed.). https:
//hal.inria.fr/hal-01355391

[4] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and Benoit
Baudry. 2018. Omniscient Debugging for Executable DSLs. Journal of Sys-
tems and Software (2018). http://www.sciencedirect.com/science/article/pii/
50164121217302765

[5] Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, and Benoit Baudry. 2015.
A Generative Approach to Define Rich Domain-Specific Trace Metamodels. In
11th European Conference on Modelling Foundations and Applications (ECMFA
2015) (LNCS), Vol. 9153. Springer, 45-61.

[6] Erwan Breton and Jean Bézivin. 2001. Towards an understanding of model
executability. In Proceedings of the international conference on Formal Ontology in
Information Systems (FOIS "01). ACM.

[7] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier. 2011. Con-

tracts for Model Execution Verification. In Seventh European Conference on Mod-

elling Foundations and Applications (ECMFA 2011) (LNCS), Vol. 6698. Springer,

3-18.

Eric Cariou, Olivier Le Goaer, Franck Barbier, and Samson Pierre. 2013. Character-

ization of Adaptable Interpreted-DSML. In 9th European Conference on Modelling

[2

=

8

=

E. Cariou et al.

Foundations and Applications (ECMFA 2013) (LNCS), Vol. 7949. Springer, 37-53.

[9] Peter J. Clarke, Yali Wu, Andrew A. Allen, Frank Hernandez, Mark Allison, and

Robert France. 2013. Formal and Practical Aspects of Domain-Specific Languages:

Recent Developments. IGI Global, Chapter 9: Towards Dynamic Semantics for

Synthesizing Interpreted DSMLs.

Benoit Combemale, Xavier Crégut, and Marc Pantel. 2012. A Design Pattern

to Build Executable DSMLs and associated V&V tools. In The 19th Asia-Pacific

Software Engineering Conference (APSEC 2012). IEEE.

Thomas Degueule, Benoit Combemale, Arnaud Blouin, and Olivier Barais. 2015.

Reusing Legacy DSLs with Melange. 15th Workshop on Domain-Specific Model-

ing.

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-

Marc Jézéquel. 2015. Melange: A Meta-language for Modular and Reusable

Development of DSLs. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Software Language Engineering (SLE 2015). ACM, New York, NY,

USA, 25-36. https://hal.inria.fr/hal-01197038/document

Codrut-Lucian Lazar, Ioan Lazar, Bazil Parv, Simona Motogna, and Istvan-Gergely

Czibula. 2010. Tool Support for f{UML Models. International Journal of Computers

Communications & Control 5, 5 (2010).

Grzegorz Lehmann, Marco Blumendorf, Frank Trollmann, and Sahin Albayrak.

2010. Meta-Modeling Runtime Models. In Models@run.time Workshop at MoDELS

2010 (LNCS), Vol. 6627. Springer.

[15] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel. 2013. xMOF:
Executable DSMLs Based on fUML. In The 2013 International Conference on Soft-
ware Language Engineering (SLE ’13) (LNCS), Springer (Ed.), Vol. 8225. Springer,
56-75.

[16] Karl A. Morris, Mark Allison, Fabio M. Costa, Jinpeng Wei, and Peter J. Clarke.
2015. An adaptive middleware design to support the dynamic interpretation of
domain-specific models. Information and Software Technology 62 (2015), 21-41.

[17] OMG. 2017. Action Language for Foundational UML (ALF), version 1.1.

http://www.omg.org/spec/ALF/1.1/.

OMG. 2017. Semantics of a Foundational Subset for Executable UML Models

(fUML), version 1.3. http://www.omg.org/spec/FUML/1.3/.

[19] Samson Pierre, Eric Cariou, Olivier Le Goaer, and Franck Barbier. 2014. A Family-
based Framework for i-DSML Adaptation. In 9th European Conference on Mod-
elling Foundations and Applications (ECMFA 2014) (LNCS), Vol. 8569. Springer,
164-179.

[20] Jérémie Tatibouét, Arnaud Cuccuru, Sébastien Gérard, and Francois Terrier. 2014.
Formalizing Execution Semantics of UML Profiles with f{UML Models. In 17th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2014) (LNCS), Vol. 8767. Springer, 133-148.

[10

[11

=
N

[13

[14

[18

https://hal.inria.fr/hal-01355391
https://hal.inria.fr/hal-01355391
http://www.sciencedirect.com/science/article/pii/S0164121217302765
http://www.sciencedirect.com/science/article/pii/S0164121217302765
https://hal.inria.fr/hal-01197038/document

	Abstract
	1 Introduction
	2 Definition of a xDSL
	2.1 Meta-classes
	2.2 Execution engine

	3 Implementation of a software with a xDSL
	3.1 Business code and executable model
	3.2 Deployment
	3.3 Discussion

	4 Related work
	5 Conclusion
	References

