A software development process based on UML
state machines

Eric Cariou®, Léa BrunschwigT, Olivier Le Goaer*, and Franck Barbier

*

*LIUPPA, Université de Pau et des Pays de 1’ Adour, E2S UPPA
B.P. 1155, 64013 PAU CEDEX, France
{Eric.Cariou, Olivier.LeGoaer, Franck.Barbier} @univ-pau.fr
TUniversidad Auténoma de Madrid
Madrid, Spain
lea.brunschwig @uam.es

Abstract—We propose a model-based software development
process based on UML state machines. State machines are
executable models and such models offer the advantage to capture
the behavior of a system at a high-level of abstraction. Besides,
the business parts of the system can be specified and weave onto
the executable models, applying a good separation of concerns.
While advanced standards such as fUML enable to define the
complete contents of an application at the model level, it leads
to too much complexity and prevents flexibility in the use of
existing code. For these reasons, we propose an intermediate and
pragmatic approach where a UML state machine is compiled
onto Java code for our lightweight execution engine PauWare.
The business parts of the application are then implemented in
standard Java.

Index Terms—Model-driven engineering, software develop-
ment, executable models, code generation, UML state machines,
PauWare

I. INTRODUCTION

In 2000, the Object Management Group (OMG) launched
the Model-Driven Architecture (MDA) initiative'. Its main
goal was to shift the complexity and the focus of software
development from code to model: models should be the
most complete as possible to define the precise behavior
of an application. MDA separates business and application
logic from underlying platform technology and through model
transformations and code generation, the final code of the
application should be automatically obtained. The goal is, if
new implementation technologies appear, that the adaptation
of the application to these technologies is “simply” made by
regenerating the code from the business logic that does not
change.

As being an initiative of the OMG, the considered models
are based on its modeling standards: UML [1], OCL [2] and
the MOF [3] for defining new modeling languages. Some years
later, the Eclipse Modeling Framework (EMF) [4] became the
de facto modeling environment for the Model-Driven Engi-
neering (MDE). Its Ecore meta-meta-model is the reference
implementation of the OMG’s MOF and a large variety of
tools for editing models, verifying them, transforming them
and generating code from them have been developed.

Thttps://www.omg.org/mda/

However, the “holy grail” of MDA can only be achieved if
models are sufficiently precise to automatically generate the
complete running code (in Java for instance) of the designed
application. The models must capture the execution behavior
of the application. Concretely, the models must contains the
equivalent of the generated code within the UML diagrams
(or any other kind of models if one defines his own modeling
language). For instance, if one defines a bank account class
in a UML class diagram with a void withdraw (float
amount) operation, the signature of the operation in the
class is not sufficient: it is required to specify that the call
of this operation subtracts the amount passed as parameter
from the balance attribute of the class. If the implementation
of this operation is straightforward using a programming
language, it becomes difficult and even impossible to define
it using only standard UML diagrams. To fill that void,
the OMG’s fUML specification [5] “defines a basic virtual
machine for the Unified Modeling Language, and the specific
abstractions supported thereon, enabling compliant models to
be transformed into various executable forms for verification,
integration, and deployment”. fUML enables to define the
execution semantics of elements of UML diagrams through
dedicated activity diagrams but with the concrete textual
syntax ALF [6], one can also write “code” in the diagrams.
This code is abstract in the sense that it does not rely on
any specific programming language. Now, it is possible to
model the behavior of our withdraw operation using fUML.
Recently, f{UML has been extended to define the execution
semantics of UML composite structures [7] and UML state
machines [8]. All these specifications are notably implemented
within Papyrus, an EMF-based modeling environment?.

The full-model approach of an application implementation
offers the expected benefits: independence of implementation
technologies, no explicit manual coding phase where bugs and
errors can be introduced compared to the specification (the
model is by definition the final system), early detection of
problems (the model can be simulated before generating the
code), ... However, as we pointed out in [9], [10], it also raises

Zhttps://www.eclipse.org/papyrus/



several questions and problems. How to integrate in the model
existing code or that must developed with a specific IDE?
How to make your software engineers moving from coding
with programming languages to design and code with models?
Does the full-model approach scale when developing large
applications? For these reasons, we propose in this paper an
intermediate and pragmatic approach where only a part of the
application will be obtained from the models. Such models
are executable models that define the behavior of the system.
In the paper, our approach is applied to UML state machines.
For executing state machines, we provide the PauWare engine
implemented in plain Java. Then, business operations imple-
mented apart in Java are weaved onto a PauWare Java state
machine and this produces the final and complete application.
This enables implementing a part of the code of the system
using a regular programming language with any IDE and to
rely on existing libraries. Another flexibility point we provide
is to be able to define a UML state machine diagram with your
favorite UML modeler and then to automatically generate the
equivalent code for the PauWare engine.

The rest of the paper is organized as follow. Section II
recalls the principles of model execution. Section III defines
our model-based software process based on UML state ma-
chines and the weaving of external business operations. Before
concluding, we discuss related work in section IV.

II. MODEL EXECUTION

In software engineering, the separation of concerns is a
fundamental principle that allows building a software with sep-
arate parts, thereby improving their maintainability and evo-
lutivity. Executable models are good potential representatives
of this principle since they capture the behavior of a software
intensive system, that is, when, why and how calling business
operations, while the latter are specified apart. For example,
an elevator has its own firmware responsible for opening and
closing doors, winding/unwinding the cable to reach a given
floor. The actions of the elevator may be triggered according
to a set of states and transitions modeled through a UML state
machine. As another example, a travel booking system running
on a server inserts customers information into a database
or call Web services provided by air transport companies.
The behavior of such a system specifies when these business
routines have to be executed and under what conditions. The
calls to the various Web services may be orchestrated through
the BPMN formalism [11].

The control flow of an application implemented with regular
programming languages can rapidly lead to a spaghetti code
where methods are calling each other depending on “if then
else” or “switch case” statements. An executable model offer
the ability to specify the behavior of the system at a higher
level of abstraction with a dedicated formalism and often
graphically. Changing or fixing the behavior of the system
consists only in changing the executable models.

All the dynamic diagrams of UML (state machine, se-
quence, activity diagrams,...) are by nature executable even
if their execution semantics is not well defined [12]. This has

been partially fixed with the recent specifications of fUML [5],
PSCP [7] and PSSM [8]. MDE offers also the ability to define
executable DSL (Domain Specific Language). A lot of a tools
such as GEMOC have been developed for this purpose [13].
Such models are said executable because they have a direct
correspondence with the running code of the system. Either
the model is interpreted, in the sense that an execution engine
reads the model and makes it evolving and calls the associated
business operations, either the model is compiled into code. In
our software development process, we use the second variant:
the target technology of the generated code is Java for our
PauWare state machine execution engine. PauWare enables to
program in plain Java a UML state machine. Thereby, the
associated business part is also implemented in Java.

II1. MODEL-BASED DEVELOPMENT PROCESS
A. Overview of the process

We propose the following software development process
based on UML state machines and the PauWare tools:

1) Define with your favorite UML modeler the state ma-
chine of the application. Add the signatures of business
operations on states and transitions.

2) Generate the code of the state machine for the PauWare
APIL. At this time, without implementing the business
operations, you can simulate the state machine to ensure
that the reified behavior is correct. If not, you fix
the state machine diagram in the UML modeler and
regenerate the code. The operations that can nevertheless
be required at this stage are the guards of the transitions
(they are implemented with plain Java methods, as it
will be shown in the following of the paper).

3) Develop apart in Java the business operations.

4) Weave the business operations onto the state machine. It
concretely only requires to define a class and/or instan-
tiating the right objects that embed these operations.

5) Execute your application that is now complete.

This process allows modeling on one side the behavior of
the system through a state machine and on the other side
implementing apart the business operations in Java. This
enables to reuse easily legacy code or existing libraries and
avoids a too big complexity in the model as all the algorithmic
or technical parts are directly implementing in Java that is the
most suitable way to define them.

The rest of the section will describe how to implement
state machines in PauWare and weave business operations onto
them. As an example, a state machine defining the behavior of
a microwave oven is presented. Another simpler example of a
stack is given for describing some important details related to
the parameters and returned values of the business operations.

B. A microwave oven example

Figure 1 shows the screenshot of a UML state machine
specifying the behavior of a microwave oven. The state
machine diagram has been designed using Modelio (open
source version 3.8). The microwave can be in two main states
depending on the state of the door: open or closed. When the



4 Closed ) 4 Open 0
DoorOpen/openDoor() .
power
off Baking A
Entry/stop() Entry/heat() ( Paused off
e DoorOpeniopenDoor() kEnW’anSGO Entry/stop()
@ Deep History

h - S/ DoorClosed/closeDoor() . J/

Fig. 1. UML state machine diagram of a microwave oven designed with Modelio

door is closed, the power button allows a cycle from baking
to putting the microwave off. When opening the door, if the
microwave was baking, it gets in a pause mode. Otherwise,
it gets in off mode. Closing the door leads to come back in
the previous mode when the door was closed, either baking
or being off: this is specified thanks to the history state of the
composite state “Closed”.

Some business operations are attached to the elements of
the state machine: each primitive state defines an entry action
(“heat” for the state “Baking” for instance) and transitions
can have an associated operation (“closeDoor” for instance
for the transition associated with the “DoorClosed” event). In
the UML model, these operations have been defined in classes
of a UML class diagram (not represented on the figure).

C. Programming models with PauWare

PauWare® [14] is a tool enabling to execute UML state
machines in plain Java programs. It is composed of two
elements:

« an API defining a set of classes for building/programming

a UML state machine associated with business operations.
The API offers almost all the state machine features of
the UML specification [1];

e an execution engine that carries on events, makes evolv-

ing the active states and executes the business operations.

PauWare can be used with any Java platform. There exists a
version for Java ME and Java EE, both compatible with Java
SE, as well as a boilerplate code for Android or the NAO robot.
Programing with the PauWare API can be done with any Java
IDE as it requires only to import a JAR file. PauWare is a
lightweight tool, this file has a size of only 100 kB.

The listing of Figure 2 is the PauWare code of the mi-
crowave state machine. This code has been entirely generated
by the PauWare code generator but it is exactly similar to
the code that one developer would have written by hand to
implement the state machine. The code generation has the
advantage to generate a code that is readable and maintainable
by human developers.

Mainly, the PauWare API defines classes for building the
states and the transitions of the state machine. Through this
example, the main features of PauWare can be presented:

o line 4, the object representing the state machine is de-

fined;

3https://www.pauware.com

o line 37, the method start ()

o lines 7 to 12, the objects representing the 6 states of the

state machine are defined;

« line 15, the “business object” is defined (and instantiated

line 18). This is the object on which the business op-
erations will be called. The class of the object can be
manually changed and several objects of different classes
can be used if required;

e line 19, the state “Off” of the composite “Closed” is

instantiated. It is marked as the input state of its com-
posite (line 20) and a business operation is associated as
an entry action (line 21): on the object bo, the “stop”
method will be called without parameter (null value).
The way to associate business operations (or guards)
with the state machine elements is always made in this
way: a Java object, the name of the method and the
array of parameters. The name of the method will be
used to make a dynamic call on the object thanks to
the reflective mechanisms of Java. Concretely here, the
BusinessObject class implements a method with the
signature public void stop();

e lines 29 and 30, the two composite states are created

using the “xor” operator between their respective internal
states (it is not used in the example but in a similar way,
the “and” operator will define parallel regions);

¢ line 32, a deep history state is added to the “Closed”

state;

e line 33, the structure of the state machine is built by

composing the two composite states as exclusive;
defines the transitions
of the state machine with the methods fires(...)
on a state machine object. Contrary to the states, here,
there is no explicit class for defining a transition. More
precisely, such a class has been added in the last version
of PauWare but the code generator is working for the
previous version;

e lines 40 and 41, basic transitions are defined with the

minimal set of mandatory elements: the name of the event
(“power”) followed by the source state and the target state
of the transition;

o lines 38, 39 and 42, transitions are defined and associated

with a business operation. For instance, on line 38, the
transition is associated with the openDoor () method
on the bo object;

o on the state machine diagram of Figure 1, a transition



public class Microwave_StateMachine {

/1

State Machine

protected AbstractStatechart_monitor Microwave_StateMachine;

// States

protected AbstractStatechart Closed;

protected AbstractStatechart Off_in_Region_in_Closed;
protected AbstractStatechart Baking_in_Region_in_Closed;
protected AbstractStatechart Open;

protected AbstractStatechart Paused_in_Region_in_Open;
protected AbstractStatechart Off_in_Region_in_Open;

// Business object associated with the SM
protected BusinessObject bo;

private void initialize_SM () throws Statechart_exception {

}

bo = new BusinessObject ();

Off_in_Region_in_Closed = new Statechart(”Off”);

Off_in_Region_in_Closed.inputState ();

Off_in_Region_in_Closed.set_entryAction(bo, ”stop”, null, AbstractStatechart.Reentrance);
Baking_in_Region_in_Closed = new Statechart(”Baking”);
Baking_in_Region_in_Closed.set_entryAction(bo, “heat”, null, AbstractStatechart.Reentrance);
Paused_in_Region_in_Open = new Statechart(”Paused”);
Paused_in_Region_in_Open.set_entryAction(bo, “pause”, null, AbstractStatechart.Reentrance);
Off_in_Region_in_Open = new Statechart(”Off”);

Off_in_Region_in_Open.inputState ();

Off_in_Region_in_Open.set_entryAction(bo, "stop”, null, AbstractStatechart.Reentrance);
Open = (Paused_in_Region_in_Open.xor(Off_in_Region_in_Open)).name(”Open”);

Closed = (Off_in_Region_in_Closed . xor(Baking_in_Region_in_Closed )).name(”Closed”);
Closed.inputState ();

Closed . deep_history ();

Microwave_StateMachine = new Statechart_monitor ((Closed.xor(Open)), “Microwave”,

AbstractStatechart_monitor.Don_t_show_on_system_out);

public void start() throws Statechart_exception {

}

Microwave_StateMachine . fires ("DoorOpen”, Closed, Open, true, bo, “openDoor”);
Microwave_StateMachine . fires ("DoorClosed”, Open, Closed, true, bo, “closeDoor”);
Microwave_StateMachine . fires ("power”, Off_in_Region_in_Closed, Baking_in_Region_in_Closed);
Microwave_StateMachine . fires ("power”, Baking_in_Region_in_Closed, Off_in_Region_in_Closed);

Microwave_StateMachine . fires (”"DoorOpen”, Baking_in_Region_in_Closed , Paused_in_Region_in_Open,
true, bo, “openDoor”);

Microwave_StateMachine . start ();

public void stop () throws Statechart_exception {

}

Microwave_StateMachine . stop ();

// Constructor
public Microwave_StateMachine () throws Statechart_exception {

}

initialize_SM ();

// Events
public void DoorOpen() throws Statechart_exception {

}

Microwave_StateMachine . run_to_completion (”DoorOpen”);

public void DoorClosed () throws Statechart_exception {

}

Microwave_StateMachine . run_to_completion (”DoorClosed”);

public void power() throws Statechart_exception {

}

Microwave_StateMachine . run_to_completion (”power”);

Fig. 2. PauWare generated code from the microwave UML state machine diagram



is defined from the state “Open” to the history state
of “Closed”. In PauWare, there is a small difference of
semantics with the UML specification concerning the
history states: there is no direct transition targeting an
history state but if a transition has for target a composite
state that contains an history state, then this transition is
implicitly targeting this history state. This is why, in line
39, the transition with the “DoorClosed” event has for
target the “Closed” state;
o line 44, the state machine is started.

Once started, the state machine can process events. This
is done by calling the run_to_completion method with
an event name as parameter. If transitions associated with
this event are starting from the current active states, then the
transitions are triggered, the active states are changed and the
associated business operations are executed.

In the generated code, there is a method for each event
processing. For instance, line 56, the DoorOpen () method
process the “DoorOpen” event. Such methods seem to be ir-
relevant as they only call the run_to_completion method
but in the following of this section, we will see their interest
when events are coming with values.

To finish presenting the example, the following code instan-
tiates and starts the state machine and processes the “power”
event:

Microwave_StateMachine sm;

sm = new Microwave_StateMachine ();
sm.start ();

sm.power ();

Concretely, it executes the following steps:

1) The initial state of the state machine is activated: the
“Closed” state.

2) The “Closed” state is a composite: its initial state “Off”
is activated.

3) The Off state has an entry action: the stop () method
is called on the bo object.

4) The “power” event is processed: starting from the “Off”
active state of “Closed”, there is a transition associated
with this event: the transition is triggered, “Off” is
deactivated and “Baking” is activated.

5) As the “Baking” state owns an entry action, it is exe-
cuted: the heat () method on the bo object.

The code of the Java business operations is not presented
here, they control the running of the microwave: turning on
or off the light or the magnetron,...

An optional thing that is possible to do when executing a
state machine, is to use the PauWare viewer. It is an experi-
mental tool that draws automatically in a Web browser the state
machine under execution. After executing the previous lines
of code, it will draw the Figure 3. It is easy to retrieve the
state machine of the initial UML diagram. The current active
states are written in blue: here, “ Baking” and its composite
state “Closed”.

D. Pauware code generator

The PauWare code generator is a tool that generates the
code of a state machine for the PauWare API from a UML
state machine model. As an example, the code of Figure 2
has been generated from the UML state machine of Figure 1.
This generator has been implemented for being the most easy
to use as possible.

Firstly, it requires no installation as it is available as a
Web application. One has just to open the Web page of the
generator4, to upload his UML model and then, the Java
PauWare code is generated in the page of the Web browser.
The code can be copied/pasted in the sources of a Java project
opened with any Java IDE.

Secondly, the code generator has been designed for being
independent of the UML modelers. For this purpose, it relies
on the XMI file format [15]. XMI is a standard of the OMG
for storing models and meta-models in a XML file. The code
generator loads an XMI file through the implementation of the
UML specification in EMF. Then, the code generator generates
the PauWare code by navigating in the UML model. However,
the saving of a model under the XMI format is not always
well respected by the tools. If some tools do not offer this
capability, others are interpreting the XMI format at their own
way that leads to difficulties to read the contents of the model.
The code generator has been able to successfully load and
generate valid PauWare code from UML models designed with
Modelio®, Papyrus® and StarUML’. Some problems have been
encountered with models designed with Entreprise Architect®:
depending on the UML model contents, the code generation
works correctly or not.

E. Weaving of business operations

The example of the microwave is weaving basic business
operations onto states and transitions in the sense that these
operations have no parameters or returned values. To explain
how to manage any kind of operations, here is another exam-
ple: Figure 4 is a state machine representing the behavior of
a stack. There are only two states, depending on the fact that
the stack is empty or not. For instance, if one pushes a value
when the stack is empty, the stack becomes not empty and it is
required to push this value onto the stack. Each transition with
the event “pop” or “push” is then associated with business
operations modifying the stack contents: pushAction for
pushing a value onto the stack and popAction for removing
and getting the value on top of the stack.

The listing of Figure 5 shows a part of the code associated
with the stack state machine. For instance, the transitions
associated with the “pop” event are defined using a guard:
there are implemented with the methods onlyOne () and
moreThanOne (). A guard is a Java method returning a
boolean. It is associated with a transition with the same

“https://pauware.univ-pau.fr/generator/
Shttps://www.modelio.org/
Ohttps://www.eclipse.org/papyrus/
"http://staruml.io/
8http://sparxsystems.com/



( Mcrowave h

Vo

( Closed

[ -+

\

\ - - - -
\DoorOpen/MicrowaveBusiness openDoor )DoorClosed/MicrowaveBusiness.closeDoor
\ /’—\d_/

\ 4

\

Open h

\

) {0

Qntryl MicrowaveBusiness sloDJ

Entryll.haowaveausmess pause )

Paused \ ’

\

o wvwe ryz"owe r

Baking )

Qntry(MlcrcwaveBusmess heatJ

IDoorOpEn/MicrowaveBusiness.openDoor /

]

off
Qntm MicrowaveBusiness.stop J

v

Fig. 3. The microwave PauWare state machine under execution drawn with the PauWare viewer tool

push/pus hAction()

push/pushAction()
.4 Empty i Not Empty

[onlyOne] pop/popAction() [moreThanOne]
pop/popAction()

Fig. 4. UML state machine diagram of a microwave oven designed with
Modelio

elements as for a business operation: the object on which
the guard is called, the name of the guard method and the
optional parameters (here there is none). The guards simply
checks here the size of the concrete stack object that is an
instance of java.lang.Stack.

The pushAction business operation takes a String as
parameter and pushes it onto the stack. This business action
is associated with the two transitions for the “push” event
as shown on the state machine of Figure 4% In the code,
the pushEvent method enables to process a “push” event
with the call of the run_to_completion method on the
state machine instance. Before that, surprisingly, it defines the
two transitions associated with the “push” event. The code is
not presented here, but as for the microwave state machine,
these transitions have been already defined when building
and starting the state machine. So why here redefining these
transitions each time the “push” event is processed? In fact,
they are not defined several times. The PauWare engine detects
that the same transitions (same source and target states, same
event, same operation or guard with same types of parameters

9In the Modelio state machine diagram, the parameters and returned values
of the methods are not shown but they have been defined as in the Java code.

private java.util.Stack<String> stack;

public boolean onlyOne () {
return stack.size() == 1;
}

public boolean moreThanOne () {
return stack.size () > 1;
}

public void pushAction(String value) {
stack . push(value);
}

public String popAction() {

return stack.pop();
}
public void pushEvent(String value) {
sm. fires ("push”, empty, notEmpty, true,
bo, “pushAction”, new Object[] { value });
sm. fires ("push”, notEmpty, notEmpty, true,
bo, "pushAction”, new Object[] { value });
sm.run_to_completion (”push”);

Fig. 5. Part of the code associated with the stack state machine

on the same objects) exist already. The goal here is to modify
the set of parameters of the pushAct ion business operation:
the parameters become an array of Object containing the String
“value” parameter of the pushEvent method. In this way,
we are able to define a transition associated both with an event
and business values. These business values can then be passed



as parameters of the business operation or the guard'.

The popAction business operation is associated with the
two transitions with the “pop” event. Its code is presented in
the listing of Figure 5: it simply removes and returns the top
of the stack. But which element is getting this returned value?
Concretely, there is none. The problem here comes from the
inherent nature of executable models as we explained in [10]:
they capture the behavior of the system and they control the
call of the business operations. Both parts of the application,
control and business, are clearly separated. The executable
model reifies the control flow but the data flow among business
operations is difficult to manage. It is not possible to set
that the returned value of popAction will be a parameter
of another business operation. In [10], we propose a generic
solution to manage the data flow when defining an executable
DSL. But here, we are using standard UML state machines
and our solution requires to modify the meta-model of the
DSL. Our solution can anyway be manually implemented in
the Java code: the idea is to use a shared object such as a
Java Map to store each required data (parameters or returned
values) with a name. Concerning our popAction operation,
the transitions will be associated with another operation, a
wrapper, that will call the business operation and put the
returned value in the Map. So, this value can be used when
another business operation will be called later on during the
state machine execution. Here is what it could be:

// the new operation associated with the transitions

public void wrapperPopAction() {

// call the business operation

String res = bo.popAction();

// put its returned value in the shared Map
mapValues. put(”popActionResult”, res);

Finally, concerning the business operations, it is of course
also possible to change the parameters of the operations
associated with states (our examples do not require to use
this feature).

IV. RELATED WORK

Code generation from UML diagrams or state machines
expressed in another formalism has been widely studied. Some
works are based on formal methods but this prevents from
being used by most of the software engineers because of their
complexity. The main advantage of our approach does not deal
with this code generation but more generally with the ability
to build an application based on the weaving of easy-to-define
executable models and regular code for the business part of the
application. Two main approaches dealing with Java business
code can be cited in this domain.

The first one is Yakindu [16]. It is a tool for defining state
machines based on the semantics of Harel’s statecharts [17]
that are the basis of the UML state machines with slight
differences. Yakindu offers a graphical and integrated envi-
ronment for defining state machines, simulating, debugging

101f this way of passing the parameters of business operations is at a first
sight a bit complex, remember that the code of the pushEvent method is
automatically generated from the UML model.

and testing them. From the point of view of these verification
capabilities, Yakindu goes further than our PauWare tools.
However, the state machine must be defined with their tool
whereas we are the most independent as possible of UML
modelers. Yakindu offers also code generation features for
several languages, including Java. Business operations and
variables can be defined in the statechart model and the Java
code will integrate the signatures of the business operations
and even the affectation and the update of the business
variables. It is possible as for PauWare to weave business
code developed apart into the state machine. However, the
code generation is made at a lower level than for PauWare.
Yakindu does not offer an extended API for programming
state machine structures as PauWare. As a consequence, the
PauWare code generator produces a code that is more easily
readable and maintainable manually by a developer concerning
the definition of the state machine. Moreover, the generated
code of Yakindu is mixing the business operations with a part
of the execution engine. In PauWare, the execution engine
code is fully separated from the state machine code.

The second approach is jJBPM for Java Business Process
Modeling [18]. Business processes are kind of activity di-
agrams that define the orchestration of business operations.
In the OMG’s world, such models are defined in BPMN
(Business Process Model and Notation) [11] which is one of
the specifications implemented by the jBPM toolkit. jBPM is
similar to PauWare on several points: the executable models
can be integrated and woven with business operations within
any kind of Java application. jBPM can be used as PauWare
for programming an executable model but an Eclipse-based
and a Web-based graphical editors are also available. A Web-
based editor offers the advantage of not requiring any software
installation where in PauWare we are independent of the
UML modelers. jBPM integrates a lot of technical features
(persistence, links to existing Java frameworks...) but the main
difference with PauWare deals with the kind of executable
models that can be used. jBPM is based on process models
for defining the orchestration of business operations whereas
PauWare is based on state machines and is then more suitable
for event-based and reactive applications.

State Chart XML (SC-XML) is a W3C standard [19] for
defining state machines under a XML format. If a partial code
generator from SC-XML to PauWare has only been imple-
mented, PauWare however integrates the semantics of SC-
XML and can be used to execute equivalent models [14], [20].
For Java development, PauWare offers the same functionality
as the Javascript SCION engine [21] able to execute SC-XML
state machines.

Finally, readers interested in how weaving business opera-
tions onto executable DSL can read [10] and its related work
section to compare with existing approaches.

V. CONCLUSION

In this paper, we propose a model-based software develop-
ment process based on UML state machines. State machines
are executable models and such models offer the advantage to



capture the behavior of a system at a high-level of abstraction.
Our PauWare API and engine enable to program in plain
Java a UML state machine, to weave business operations
onto its states and transitions and to execute the resulting
application. To simplify the implementation of such state
machines, we have implemented a code generator that takes as
input a UML model defining a state machine and produces the
equivalent code for the PauWare API. Then, it is easy to weave
existing Java business operations implemented apart onto this
generated code. This development process is an intermediate
and pragmatic approach between modeling and coding: the
executable state machine is defined as a standard UML model
because it is the most suitable way to define it but for the
business part, integrating the complete business operations
contents in the model with fUML for instance will be too
complex and restrictive. For this reason, the business part relies
on a plain Java implementation to maximize the flexibility and
efficiency in the development of the business operations.

As a perspective, the main point is to develop the veri-
fication features of the PauWare tools. As shortly described
in section III-A, once the code generated from an UML
state machine, you can simulate the state machine without
the business operations. Once you have weaved the concrete
business operations with the state machine code, you get the
complete application and you can execute it. As both for
simulation and execution stages, the execution engine is the
same (it is the PauWare engine). That is important to notice
as it implies that the simulated model and the executed model
are processed with the same execution semantics. There is no
gap between the specification and the code: the same model
(under the form of PauWare Java code) is executed in the same
manner. Consequently, if your state machine model is valid at
design, it will also be valid at runtime. To fulfill the verification
capabilities at simulation or running stages, PauWare has been
extended to attach a monitor to the running state machine.
Concretely, a monitor implements a set of methods that will
be called when actions are processed on the state machine: a
new state is activated, a business operation is executed, ... This
kind of monitor can be used for generating an execution trace,
for ensuring that the state machine is running correctly or to
plug a model checker to verify the state machine behavior. The
main perspective around PauWare is to develop case studies
for these verification capabilities.

Another perspective is to be able to make retro-engineering.
In the paper, we have presented a process from top to bottom
where PauWare code is generated from a UML model. It could
also be possible to retrieve the UML state machine from a
PauWare program. This is what the PauWare viewer is doing
as presented in the paper but an interesting feature will be to
generate a UML state machine model readable with a UML
modeler. This will also enable making co-evolution between
the model and the code.

VI. ACKNOWLEDGMENT

The presented work is part of the MegaM@RT?2 project
(Megamodeling at Runtime Scalable Model-based Frame-

work for Continuous Development and Runtime Validation of
Complex Systems) [22] which has received funding from the
Electronic Component Systems for European Leadership Joint
Undertaking (ECSEL-JU) under grant agreement No.737494.
This project receives support from the European Unions Hori-
zon 2020 research and innovation program and from Sweden,
Spain, Italy, Finland & Czech Republic.

REFERENCES

[1] OMG, “Unified Modeling Language (UML) Specification, version
2.5.1 2017, http://www.omg.org/spec/UML/2.5.1/.

[2] ——, “Object Constraint Language (OCL) Specification, version 2.4,”
2014, http://www.omg.org/spec/OCL/2.4/.
[3] ——, “Meta Object Facility (MOF) Specification, version 2.5.1,” 2016,

https://www.omg.org/spec/MOF/2.5.1.

[4] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley, 2008.

[5] OMG, “Semantics of a Foundational Subset for Executable
UML Models (fUML) Specification, version 1.4, 2018,
http://www.omg.org/spec/FUML/1.4/.

, “Action Language for Foundational UML (ALF) Specification,
version 1.1,” 2017, http://www.omg.org/spec/ALF/1.1/.

[7] 3 “Precise ~ Semantics of UML  Composite  Struc-
tures (PSCS) Specification, version 1.2 2019,
https://www.omg.org/spec/PSCS/1.2/.

, “Precise Semantics of UML State Machines (PSSM) Specification,

version 1.0,” 2019, https://www.omg.org/spec/PSSM/1.0/.
[9] F. Barbier and E. Cariou, “Executable Modeling for Reactive Pro-

gramming,” in Model-Driven Engineering and Software Development

(MODELSWARD 2018), ser. CCIS, vol. 991.  Springer, 2019.

[10] E. Cariou, O. Le Goaer, L. Brunschwig, and F. Barbier, “A generic
solution for weaving business code into executable models,” in The
4th International Workshop on Executable Modeling at MODELS (EXE
2018), vol. 2245. CEUR Workshop Proceedings, 2018.

[11] OMG, “Business Process Model and Notation (BPMN) Specification,
version 2.0,” 2015, https://www.omg.org/spec/BPMN/2.0/.

[12] E. Cariou, O. Le Goaer, and F. Barbier, “On the Executable Nature of
Models,” in The 2nd International Workshop on Executable Modeling
at MODELS (EXE 2016), vol. 1760. CEUR Workshop Proceedings,
2016.

[13] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution Framework of the GEMOC Studio (Tool
Demo),” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2016, ACM,
Ed., 2016.

[14] F. Barbier, Reactive Internet Programming — State Chart XML in Action.
the Association for Computing Machinery and Morgan & Claypool,
2016.

[15] OMG, “XML Metadata Interchange (XMI) Specification, version 2.5.1,”
2015, https://www.omg.org/spec/XMI/2.5.1/.

[16] Itemis, “YAKINDU Statechart Tools Web site,” visited July 2020,
https://www.itemis.com/en/yakindu/state-machine/.

[17] D. Harel and E. Gery, “Executable Object Modeling with Statecharts,”
Computer, vol. 30, no. 7, pp. 31-42, 1997.

[18] M. N. De Maio, M. Salatino, and E. Aliverti, jJBPM6 Developer Guide.
Packt Publishing Ltd, 2014, https://www.jbpm.org/.

[19] W3C, “State Chart XML (SCXML): State Machine
Notation for Control Abstraction, recommendation 1,” 2015,
https://www.w3.0rg/TR/2015/REC-scxml-20150901/.

[20] F. Barbier, O. Le Goaer, and E. Cariou, “Energized State Charts with
PauWare,” in 2nd Workshop on Engineering Interactive Systems with
SCXML at EICS 2015.

[21] Jacobean Research and Development LLC., “SCION: a suite of
software for standard state machine support,” visited July 2020,
https://scion.scxml.io/.

[22] W. Afzal, H. Bruneliere, D. D. Ruscio, A. Sadovykh, S. Mazzini,
E. Cariou, D. Truscan, J. Cabot, A. Gémez, Y. Gorronogoitia, L. Po-
mante, and P. Smrz, “The MegaMRt2 ECSEL project: MegaModelling at
Runtime Scalable model-based framework for continuous development
and runtime validation of complex systems,” Microprocessors and
Microsystems: Embedded Hardware Design (MICPRO), no. 61, Elsevier,
pp. 86-95, 2018.

[6]

[8]



