
EDOC’02 – 19/09/2002

An Architecture and a Process for
Implementing Distributed Collaborations

Éric CARIOU, Antoine BEUGNARD, Jean-Marc JÉZÉQUEL



INTRODUCTION

➤ Key-point in distributed systems: communication among remote
components

➤ Non-functional constraints can impact the implementation

➤ Our proposition:

➥ The reification of interaction abstractions as software compo-
nents

➥ An architecture and a specification process of these compo-
nents

An Architecture and a Process for Implementing Distributed Collaborations 2/23



OUTLINE

1. Study of a reservation system in two different contexts

2. Influence of non-functional constraints

3. Introduction to interaction components

4. How interaction components can help in management of non-
functional constraints

An Architecture and a Process for Implementing Distributed Collaborations 3/23



RESERVATION OF PLACES IN BUSES

➤ A small bus company with few journeys

➤ A single agency sells places in buses for this company

ErnestCo AgencyBusCompany Bus Seat
Reservation

observer

reserver

source

➤ The components interact through a reservation system

An Architecture and a Process for Implementing Distributed Collaborations 4/23



RESERVATION OF PLACES IN FLIGHTS

➤ A big airline company with hundreds of flights

➤ Thousands of travel agencies worldwide distributed

Airline: ErnestAir

TravelAgency:A Agency

TravelAgency:Z Agency

source

reserver

reserver

observer

observer
Flight seat reservation

. . .

➤ The components interact through a reservation system

An Architecture and a Process for Implementing Distributed Collaborations 5/23



AN ABSTRACT RESERVATION SYSTEM

➤ In both applications:

➥ Reservers components: reservation of identifiers (places) and
cancellation of reservations

➥ Source components: addition and removal of informations on
resources (buses or planes)

➤ Same requirements � same reservation abstraction, same inter-
action abstraction

An Architecture and a Process for Implementing Distributed Collaborations 6/23



THE RESERVATION SYSTEM IMPLEMENTATION

➤ But the context is different:

➥ Number and localization of interacting components

➥ Number of data to handle

➤ A single small data server is enough for the first case but not for
the second � need different implementations to face scalability

� same functional requirements but different implementations

An Architecture and a Process for Implementing Distributed Collaborations 7/23



INTERACTION ABSTRACTIONS

➤ Non-functional constraints (e.g. scalability, security, reliability) im-
pact the implementation of an interaction abstraction

➤ Some questions:

➥ How to specify an interaction abstraction ?

➥ How to have several implementations of the same abstrac-
tion ?

� we propose to use interaction components

An Architecture and a Process for Implementing Distributed Collaborations 8/23



INTERACTION COMPONENTS (OR MEDIUMS)

Software component integrating any communication (coordination, in-
teraction) system or protocol

➤ Independently of its complexity: a consensus protocol, a multime-
dia stream broadcast, a voting system...

➤ At specification level: a UML collaboration following specific de-
sign rules

➤ At implementation and deployment levels: an instantiable compo-
nent

� reification of an interaction abstraction during all the software pro-
cess

An Architecture and a Process for Implementing Distributed Collaborations 9/23



SPECIFICATION OF A MEDIUM: USAGE CONTRACT

➤ A UML collaboration specifies a medium

➥ Depending on their needs, components using the medium play
different roles

➥ For each role: interfaces of offered and required services

➤ OCL and others UML features for specifying the services seman-
tics

➤ Abstract specification: without implementation assumption

An Architecture and a Process for Implementing Distributed Collaborations 10/23



THE RESERVATION MEDIUM

ReservationMedium

Boolean cancelerIsReserver

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

/source

ReserveId

/reserver
ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/observer

ResourceId

ResourceId

*

*
*

originalSet

available
*

0..1
reserved

*
resources

*

ResourceId

An Architecture and a Process for Implementing Distributed Collaborations 11/23



THE RESERVATION MEDIUM

ReservationMedium

Boolean cancelerIsReserver

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

ReserveId

ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

ResourceId

ResourceId

*

*
*

originalSet

available
*

0..1
reserved

*
resources

*

ResourceId

/source

/observer

/reserver

An Architecture and a Process for Implementing Distributed Collaborations 12/23



THE RESERVATION MEDIUM

/source

ReserveId

/reserver
ResourceId

/observer

ResourceId

ResourceId

*

*
*

originalSet

available
*

0..1
reserved

*
resources

*

ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

ReservationMedium

Boolean cancelerIsReserver

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

An Architecture and a Process for Implementing Distributed Collaborations 13/23



THE RESERVATION MEDIUM

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

/source

/reserver
ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/observer

ReservationMedium

Boolean cancelerIsReserver

0..1
*

*
*

originalSet

available
*

reserved

*
resources

*

ResourceId

ReserveIdResourceId

ResourceId

An Architecture and a Process for Implementing Distributed Collaborations 14/23



DEPLOYMENT ARCHITECTURE OF A MEDIUM

➤ A “role manager” is locally associated with each component

➤ Medium = logical unit composed of all the role managers

➤ A role manager can be as complex as required

Manager
Observer

Middleware

AirLine

Manager
Reservation
Information

Reserver

Reserver

Manager

Source
ManagerSite A

Site B

Middleware

TravelAgencyA

TravelAgencyB

Site D

Site C

Flight Seat
Reservation

An Architecture and a Process for Implementing Distributed Collaborations 15/23



ADVANTAGES OF THIS ARCHITECTURE

➤ Several implementations of the same abstraction are easily real-
izable

➤ Good separation of functional and interactional concerns even at
implementation level

An Architecture and a Process for Implementing Distributed Collaborations 16/23



FROM ABSTRACT SPECIFICATION TO IMPLEMENTATIONS

➤ Specification refinement process:

➥ Transform an abstract specification into an implementation one
according to implementation choices or constraints

➥ Transform the single UML class medium into a set of role man-
agers classes to match the deployment architecture

➥ From usage contract to implementation contract

➤ A single abstract specification can lead to several implementation
designs

An Architecture and a Process for Implementing Distributed Collaborations 17/23



THE RESERVATION MEDIUM AT ABSTRACT LEVEL

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

/source

/reserver
ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/observer

*

*

*

*
originalSet

available
*

0..1
reserved

resources

*

ResourceId

ReserveId

ResourceId

ReservationMedium

Boolean cancelerIsReserver
ResourceId

An Architecture and a Process for Implementing Distributed Collaborations 18/23



EXAMPLE: DISTRIBUTED DATA MANAGEMENT CHOICE

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

/source

/observer

ResourceId

ResourceId

ResourceId

ReserveId

ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/reserver

*

ResourceId

*

0..1

localAvailable

originalLocalSet
*
*

*

reserved

*

originalSet

resources *

*

Boolean cancelerIsReserverer

ReserverManager

ObserverManager

SourceManager

*

An Architecture and a Process for Implementing Distributed Collaborations 19/23



EXAMPLE: DISTRIBUTED DATA MANAGEMENT CHOICE

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

SourceManager

ObserverManager

/source

/observer

ResourceId

addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/reserver

*

ResourceId

*
*

0..1

localAvailable

originalLocalSet
*
*

*

reserved

*

originalSet

resources *

ResourceId ReserveId

ResourceId

*

Boolean cancelerIsReserverer

ReserverManager

ResourceId

An Architecture and a Process for Implementing Distributed Collaborations 20/23



DEPLOYMENT VIEW

/source
SourceManager 1

<< Middleware >>

ISourceMediumServices

ISourceComponentServices

/observer

IObserverComponentServices

ObserverManager

IReserverMediumServices

IObserverMediumServices

*

/reserver
ReserveId

ResourceId

*

*

<< Middleware >>

*localAvailable

localOriginalSet

ResourceIdReserverManager

IReserverComponentServices

An Architecture and a Process for Implementing Distributed Collaborations 21/23



CONCLUSION

Interaction component: reification of interaction abstraction during all
the software process

➤ Advantages for the interaction management:

➥ Good separation of functional and interactional concerns even
at the implementation and deployment levels

➥ Good reusability of interaction abstractions

➤ A deployment architecture and a refinement process:

➥ From abstract specification to several implementations

➥ Selection of the adapted implementation depending on the
context or non-functional constraints (e.g. scalability)

An Architecture and a Process for Implementing Distributed Collaborations 22/23



CONCLUSION

➤ A Java framework for implementing mediums:

➥ Easy use of interactions components in applications

➥ Easy implementation of different version of a same abstraction

➥ Downloadable as free software (GPL licence)

➤ For more information:

➥ Web: http://www-info.enst-bretagne.fr/medium/

➥ E-mail: Eric.Cariou@enst-bretagne.fr

An Architecture and a Process for Implementing Distributed Collaborations 23/23



BAD DESIGN FOR THE RESERVATION INTERACTION

ErnestCo Agency

BusCompany

SeatId

source

Bus Seat
Reservation

observer

reserver

sets

➤ Identifiers managed outside the collaboration

➤ An implementation choice is already done � less implementation
variants are available

An Architecture and a Process for Implementing Distributed Collaborations



CENTRALIZED DATA MANAGEMENT

ReservationManager

Boolean cancelerIsReserver

ReserveId reserve(ResourceId)
cancel(ReserveId, ResourceId)

<< interface >>
IReserverMediumServices

<< interface >>

nbAvailableId(ResourceId)

IObserverMediumServices

ResourceId ReserveId

ResourceId

ResourceId

SourceManager

ReserverManager

ObserverManager

/reserver

/source
addReserveIdSet(ResourceId, ReserveId[])
removeReserveIdSet(ResourceId)

ISourceMediumServices
<< interface >>

/observer

*

*
*

originalSet

available
*

0..1
reserved

*
resources

*

ResourceId

An Architecture and a Process for Implementing Distributed Collaborations



CENTRALIZED DATA MANAGEMENT

/reserver
ReserverManager

ObserverManager

<
<

 M
id

dl
ew

ar
e 

>
>

IReserverComponentServices

IReserverMediumServices

/source
SourceManager

Boolean usable = false

ReservationManager

ReserveId
* *

ResourceId

available originalSet

/observer

IObserverComponentServices

ISourceComponentServices

ISourceMediumServices

*

IObserverMediumServices

<< Middleware >>

*

An Architecture and a Process for Implementing Distributed Collaborations


