
LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

OCL Contracts for the Verification of
Model Transformations

LIUPPA Laboratory – Self-* team
Université de Pau et des Pays de l’Adour – France

Eric Cariou, Nicolas Belloir,
Franck Barbier and Nidal Djemam

OCL Workshop, MoDELS – 5 October 09 – Denver

2

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Context

MDE based software process
Composed of a set of model transformations
Process and transformations are rarely fully
automatized
● Designers can / have to intervene on models

manually

Need to verify
That transformations have been carried out
correctly
An even more important issue when designers
intervene manually on models

3

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Goal

Being able to verify that a couple of models is the
valid result of a transformation
No assumptions on the way models are obtained

Outputs of any tool
Can be created or modified by hand

Solution
Model transformation contracts written in full
standard OCL
Applied on endogenous transformations
● Source and target models are conformed to the

same meta-model

4

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Model transformation contract

Design by contract approach
Specification of invariants on elements
Specification of operations of these elements
● Pre and post-conditions

Application to model transformation
Specification of the model transformation operation
Transformation operation
● Take a single source model as input and generates a

single target model as output
● (Our approach is generalizable to several single or

several target models)

5

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Model transformation contract

Definition of a model transformation contract
Constraints to be respected by the source model
● For being able to be transformed

Constraints to be respected by the target model
● For being considered as a valid result of the

transformation
● Decomposed into two sets of constraints

● General constraints on the target model,
independently of the model contents

● Constraints on relationships between source and
target elements

Transformation contracts = 3 sets of constraints

6

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

OCL for expressing contracts

Why choosing OCL ?
By nature dedicated to express constraints and
then contracts
Open standard
● Available for several technological spaces (UML,

MOF, Ecore ...)

Relatively well known language
● Integrated in tools, used or extended in model

transformations languages (QVT, ATL ...)

Formal but relatively easy to use
● Accessible to the ''lambda'' designer

7

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation example

On an ''UML kind'' class diagram
Refinement: addition of interfaces on classes

Realization of the transformation
First step: automatic generation of an interface
● Creation of a default interface for each class
● Moving of all class methods to this interface

Second step: designer can modify the
transformed diagram
● Modification of the localization of methods
● Modification of interfaces (renaming, addition,

removing ...)

8

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation example

Modèle initial (source)

9

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation example

Initial model (source) Intermediate model

Interface
creation

Moving of the
methods

10

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation example

Initial model (source) Intermediate model Final model (target)

Interface
renaming

Moving of
 the methods

11

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation example

Contract associated with this transformation
Constraints on source model
● None, any class diagram can be transformed

General constraints on target model
● Each class implements at least one interface

Evolution constraints between source and
target model elements
● After the transformation, each class still implements

the same method set
● Directly or via its interfaces

● Can also express that some elements are not
modified: associations, attributes of classes ...

12

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Simplified meta-model of class diagram

13

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation operation specification

Definition of the contract
Specifying through pre and post-condition the
transformation operation

● context ModelBase::addInterfaces()
pre: - - constraints on the source model: none
post:
 - - constraints on the target model
 allClasses -> forAll (c | c.interfaces -> notEmpty()) and
 - - evolution constraints between source and target
 allClasses -> size() = allClasses@pre -> size() and ...

Pre-condition: reference the source model
Post-condition: reference the target model
● @pre OCL construction: allows the handling of

source model elements in post-condition

14

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Transformation operation specification

Limitation of the pre/post specification
Verify that the execution of the transformation is correct
Need a tool that can realized both execution and
verification
Strong restriction on the way to obtain the models

● Notably no possibility to modify manually the models

Other solution
Defining an OCL invariant for each of the 3 sets
Problem

● Need for the evolution constraint set to define invariants
applying both on source and target models

● Not possible because of the OCL single expression context

15

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Concatenation of models

To overpass the single OCL context limitation
Concatenation of both source and target models into a
third global one

● All 3 models conform to the same meta-model

Express invariants and constraints on this global model
Need to know if an element of the global model comes
from the source or the target model

Technical solution
On meta-model: add a ModelReference super-class
Allow each element to be tagged: ''target'' or ''source''
A tool automatically modifies the meta-model,
concatenates the models and tags their elements

16

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Concatenation of models

Example: our class diagram meta-model
Addition of the ModelReference super-class

17

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Mapping between elements

Definition of evolution constraints
Constraints between the contents of some target
elements and the contents of some source elements
Often based on the necessity to get on the source side
the mapped element of a target element

● Have the same type
● Have common values or characteristics

Example with classes for our contract
● ''Account'' class in the target model must have the

same methods of the ''Account'' class in the source
● Need to get the mapped class of ''Account'' on source

● Simply look for a class with the same name
● It is enough because of the unicity of type names

18

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Mapping between elements

Other example
Unmodification of associations
● Simply need to verify that an association has a

mapping on the other side with same values
More complex to express than for classes
● Not unicity of association names
● Need also to check the mappings of their

association ends
● Name, bounds and associated classes
● Need then to check the mapping of classes

Transitive mapping checks on associated elements

19

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Example: mapping for associations

1. look for an association
with the same name

2. then look for
association ends
with same attributes

3. and referencing
the same classes

20

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Mapping functions

Mapping functions
Defined through a set of OCL helpers (def:)

Example: mapping functions for the Class element
context Class def: classMapping(cl : Class) : Boolean =
self.name = cl.name and
self.sameAttributes(cl)

context Class def: hasMappingClass(mb:ModelBase) :
 Boolean =

mb.allClasses -> exists(cl | self.classMapping(cl))

context Class def: getMappedClass(mb:ModelBase) : Class =
mb.allClasses -> any (cl | self.classMapping(cl))

A tool allows the automatic generation of all
required mapping functions in a contract

21

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Tool: Mapping Function Generator

22

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Contract example: evolution constraints

Verification of unmodification of method sets
For each class on target side, check that it gets a
mapped class on the source side

● If not, the contract is not respected

For each of the target class and its mapped source class
● Get its full set of methods: directly implemented or

through its interfaces

Compare the contents of these sets
● If not the same, the contract is not respected

Based on mapping functions applied on
Classes, attributes, methods, set of attributes, set of
methods

23

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Contract example: evolution constraints

Contract invariant for evolution constraints
All constraints expressed on the global model
First, get the model base element for each
model

● context ModelBase def: sourceModel : ModelBase =
ModelBase.allInstances() -> any (modelName = ’source’)

● context ModelBase def: targetModel : ModelBase =
ModelBase.allInstances() -> any (modelName = ’target’)

Then, apply an invariant on these models
● context ModelBase inv checkInterfaceContract:

targetModel.sameClasses(sourceModel)

24

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Contract example: evolution constraints

context ModelBase def: sameClasses(mb : ModelBase) : Boolean =
self.allClasses -> size() = mb.allClasses -> size() and
self.allClasses -> forAll(c |
 if c.hasMappingClass(mb)
 then
 let myMethods : Set(Method) = c.interfaces -> collect(i |
 i.methods) -> union(c.methods) -> flatten() in
 let eqClass : Class = c.getMappedClass(mb) in
 let eqClassMethods : Set(Method) = eqClass.interfaces ->
 collect(i | i.methods) -> union(eqClass.methods) -> flatten() in
 c.sameMethodSet(myMethods, eqClassMethods)
 else
 false
 endif)

25

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Conclusion

Definition of model transformation contracts
Using only full standard OCL
Show that the intuitive pre/post specification is too
restrictive

Contracts = 3 sets of OCL invariants
Constraints on source model
Constraints on target model
Constraints on element evolution between source and
target

● Require a model concatenation ''trick'' to overpass the
OCL single expression context

● Strong need of a multi-context feature in OCL

26

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Conclusion

Mapping functions
One-to-one mapping between elements of the
same type
● Automatically generated thanks to our tool

''Simple'' mappings but two major interests
● Help in structuring and defining the contract

● Interface contract example: 17 lines of OCL written
by hand and ~35 lines for mapping functions

● Checking unmodification parts of a model is only
composed of mapping functions

● Unmodification contracts are fully automatically generated
● For our example: ~50 lines of OCL

27

LI
U

P
P

A
 L

ab
or

at
or

y
–

 S
el

f-
*

 T
ea

m

Perspectives and resources

Currently, restriction to endogenous context
Extension of our approach to exogenous context
● Different source and target meta-models
● Definition of other mapping functions in this context

Problem: still the single OCL expression context
● Solution: concatenation of meta-models as for

models

Resources
Prototypes of our tools and full contract examples
● For the Eclipse/EMF platform
● http://web.univ-pau.fr/~ecariou/contracts/

http://web.univ-pau.fr/~ecariou/contracts/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

