The Specification of UML Collaborations as
Interaction Components

Eric Cariou and Antoine Beugnard

ENST Bretagne, BP 832, 29285 BREST CEDEX, FRANCE
{Eric.Cariou,Antoine.Beugnard}Qenst-bretagne.fr

Abstract. One of the touchstones of Object-Oriented Design is that the
management of complexity is seldom located within any single object. It
should instead be an emerging property of the collaborations within a
society of objects, each one of these being as simple as possible. These
collaborations can easily be specified using UML collaboration diagrams.
We propose to reify UML collaborations as interaction components. This
allows the easy handling and reusing of interaction abstractions among
components at both specification and implementation levels.

This paper focuses on the specification of these components. We propose
criteria to define the type and the “frontier” of an interaction abstraction.
We present a UML collaboration specification methodology that deals
with the constraints of component specification.

Keywords: UML collaborations, specification methodology, interaction
abstraction, interaction components

1 Introduction

The essence of the object-oriented paradigm is the modeling of interesting phe-
nomena as a structure of interacting objects [2]. The management of complexity
should not be located within any single object. It should instead be an emerg-
ing property of the collaborations within a society of objects, each one of these
being as simple as possible. The interest of this notion of collaboration has
long been recognized in the object-oriented community, and some methodolo-
gies of the early nineties (such as CRC [18] or OOram [14]) even concentrated
on collaborations as the basic building blocks to carry out object-oriented de-
sign. Collaboration diagrams are now well established as a core component of
UML [13]. They allow the easy handling and reusing of interaction abstractions
among components.

Very often, though, these interaction abstractions get lost during the detailed
design process, making it difficult to keep good traceability between the design
and the implementation. At implementation level very few traces of these ab-
stractions are still visible: collaborations have been refined, split and lost in a
set of objects that can be distributed over a network and communicate through
“low level” primitives such as remote procedure calls. Given that, at the imple-
mentation level, the communication principles used are basic, the designer will

perhaps unconsciously not search to build complex or high level collaborations
at design time.

In this paper we propose to reify UML collaborations into interaction com-
ponents, in such a way that any given collaboration can be thought of as both
a design level component and an implementation level component (i.e. at the
level of EJB, .NET or CCM). These components are designed to be as complex
as required at the implementation level, allowing the designer to handle high-
level interaction abstractions throughout the software process. So there are no
more “restrictions” for the design of high-level collaborations that can have very
interesting properties such as reusability and substitutability.

The rest of the paper is organized as follows. In section 2, we study a car park
access control system and show that if the collaboration used is well designed, it
leads to several advantages such as reusability. In section 3 we describe how we
can design a collaboration as a reusable component, using UML and OCL [17]
to precisely specify its properties. We also give guidelines for finding the frontier
and the responsibility of a collaboration by defining its component type. Then
we discuss related works in section 4, before concluding with some interesting
perspectives for interaction components.

2 A car park management application

In this section, we briefly discuss a car park management system. We focus on
the UML collaboration used in the application specification and study a better
way to define it.

2.1 Specification of the car park application

Place [7]
—_ CarPark Access: accessOne
set . 3 uses
S~.__source _______ reserver __--""
"~ cCarPlace %~
5 Management __
Information Display It e “"----___ |Access: accessTwo
observer - reserver - E—
read uses
Car []
|

Fig. 1. Car park management application

The car park is composed of a set of parking places. Each place is referenced
by a unique identifier (e.g. a number). A car in the car park occupies one identi-
fied place. A car can enter and leave the car park using one of two accesses. The

place occupied by a car is assigned to it when it enters the car park. Outside the
car park, an information monitor displays the number of available places.
Figure 1 is an UML instance diagram representing this application. We can
see on this figure the car park, the two accesses and the display that are the four
components forming the car park management system. The car park component
manages the set of identified places. The cars are objects using this system.
These four components interact among themselves in the following way:

— When a car wants to enter the car park, the access door sends a query to the
car park component to get a place identifier. If the car park is full, a special
value is returned.

— When a car leaves the car park, the access door must inform the car park
component that the place occupied by the car is available again.

— When a car enters or leaves through an access door, the number of available
places has to be refreshed accordingly on the display.

So the four components interact through the “Car Place Management” col-
laboration. In this collaboration, an access plays a reserver role because it can
reserve (and cancel) a place in the car park for a car. The display plays the
observer role because it keeps informing on the number of available places. The
car park component plays the source role because it represents the car park
itself and manages the place set.

2.2 What is the complexity of the collaboration ?

The answer to this question depends on what the car park component is and on
how the collaboration has been designed.

A first specification. In our application specification, the car park component
has the responsibility of managing the set of places. It has to maintain the list of
available places in the car park. The collaboration® is very simple (see figure 2).
It just describes the method calls and their nesting between the roles.

If a reserver wants to reserve a place, it calls the newCarEntering method
on the source role and gets a place identifier (or a special value if no place
is available in the car park). To cancel the reservation of a place by a car, it
calls the carLeaving method on the source manager with the place identifier as
parameter.

Each time one of these two methods is called, the number of available places
changes and the observer roles must be informed of this new number: the nb-
AvailablePlaces method is called on the observer roles.

For more precision, each method can be specified using OCL pre and post-
conditions.

! Collaborations are generally described at instance level. In this paper, all the collab-
orations are described at specification level (see [13, page 3-109]) because we want
to specify generic interactions and not application dedicated ones.

A.1 placeld = newCarEntering()

Ireserver

B.1 carLeaving(placeld)
st g

Isource

lobserver B.2 nbAvailablePlaces(availablePlaces)

*

A.2 nbAvailablePlaces(availablePlaces)

Fig. 2. First specification of the collaboration

A more interesting specification. This interaction pattern is not specific to
our car park. It can be used (or more precisely reused) in several contexts.

For instance, if the data to reserve are flight seats instead of car places and
with minor changes like method renaming, the collaboration can be used in a
context of a flight seat reservation system. An airline that wants to sell places
for a given flight then plays the source role. The reserver and observer roles are
travel agencies that reserve seats on this flight for their clients.

The context of this application is completely different but the structure of
the interaction is the same as in the car park management application. The
collaboration used will be a slightly-modified version of the former collaboration.

In this flight seat reservation application, the airline component must manage
the list of available seats on the flight. This can be done exactly in the same way
as for the car park component with its car park places (excepting for the type
of data to manipulate: seats on a flight instead of places in a car park but
that is a minor change). We can easily imagine that the design of this system
will be exactly the same in these two contexts. So, reusing the structure of the
collaboration implies reusing the set management system associated with the
component that is playing the source role. The designer has to keep this in
mind if he wants to make a good reuse of the collaboration structure (i.e. if he
does not want to design the set management system from scratch).

This observation being made, we can re-design our collaboration. As the set
management system is closely correlated to the collaboration, why not put this
system inside the collaboration and make it work with any kind of data?

The reuse of the collaboration will also lead to the reuse of this system. The
component playing the source role will not have the responsibility of managing
the data set anymore.

This gives us a new collaboration (see figure 3). The main difference with the
former is that this collaboration does “more”. It is also more complex because
it has a state and manages a collection of data, by the way of the DataManager
component. A data is an instance of the ReservelId class. In a given context,
in order to manipulate a specific type of data, a sub-class of ReserveId class
would be defined. The collaboration can then be used independently of the data
type needed in a particular application.

The two applications are now described by the following figures:

A.1 reserveld = reserveldentifier() d
dataSet | Reservel

*

Ireserver
B.1 cancelReservation(reserveld) ‘ ‘

DataManager Isource

lobserver A.2/B.2/C.2 nbAvailableld(availableld) C.1 setldentifiers(reserveld[])

Fig. 3. New collaboration design

CarPark Access: accessOne
— P — V=1
T-~.__ source _______ reserver -7’
Reservation
% Management
Information Display “~----____ | Access: accessTwo
e --"" observer " reserver B ——
read uses
Car [
|

Fig. 4. New car park management application

— Figure 4 for the car park management application

— Figure 5 for the flight seat reservation application

In these two contexts, the collaborations used are exactly the same. They
have been directly reused without any modification. The two source roles (Car
Park and ErnestAir components) just have to specify the data set to use (by
calling the setIdentifiers service on the DataManager component) and not
manage it themselves.

Comparison of the collaboration designs. The reuse of the first collabora-
tion is almost useless. Indeed, it just describes the call of methods between the
components and this interaction is too simple and specific to belong to an inter-
action catalogue, unlike the second collaboration specification that reuses more
elements. In this case, the interaction embeds not only the method calls but also
the data management. The interaction is “self-content” and specified indepen-
dently from any context of use. This makes it easily usable in any application
design.

Having such a “complex” collaboration gives us major improvement in soft-
ware specification. Firstly, we have seen that the collaboration is more reusable.

Secondly, it allows the use of abstraction? of interaction in a high-level design

(in a class or instance diagram where the collaboration is used).

__| TravelAgency:A Agency

reserver .-’

==~ "observer

777777777777777 { Flight seat reservation i
source . .

_-=7__ observer

Airline: ErnestAir

reserver "=-..___ "~ TravelAgency:T Travel

Fig. 5. Flight seat reservation application

3 Design of collaboration as component

We have seen that the specification and the use of high-level and complex com-
munication or interaction abstractions can be easily done, notably in UML with
the collaboration diagrams. Moreover, in a class or instance diagram, the use
of a collaboration allows the manipulation of a communication abstraction as a
single entity; this communication abstraction being precisely defined in its col-
laboration diagram. But at the implementation level, these complex interactions
do not exist as “single manipulable entities” anymore, they have been refined,
split and lost in a set of objects that can be distributed over a network and
communicate through “low level” primitives such as remote procedure calls.

In order to solve this problem, we propose to manipulate an interaction be-
tween components as a component, i.e. to implement a UML collaboration into
a software component. This permits the use and the manipulation of the same
communication abstraction during the entire software development: from the
design to the code.

These components are a bit special because they do not concern the func-
tional part of an application but the interaction, the communication part. So, to
differentiate these “interaction” components from the “classical functional” com-
ponents, we call them mediums. An application is the result of the combination
of (functional) components and mediums[3, 5].

The protocols, the communication services or the interaction systems im-
plemented in mediums are various in type and complexity: event broadcast,
consensus protocol, coordination through a shared memory, multimedia stream
broadcast, vote system. ..

2 Abstraction is used in the sense that “the details are hidden” and not “fuzzy”.
It is also precise because the interaction is completely defined in its collaboration
diagram.

3.1 Medium specification methodology

As the collaboration has to be refined into a software component, its specification
must follow some particular rules.

Although the paradigm of components is now widely accepted by the software
community, there is no real consensus on the definition of a component. However,
we can summarize its principle properties [16, 8]:

— It is an autonomous and deployable software entity.

— It clearly specifies the services it offers and those it requires. This allows the
use of a component without knowing how it works (by looking at the code
for instance).

— It can be combined with other components.

The design of a collaboration must deal with the above characteristics: the
interfaces of the services offered and required must be present. A special class
inside the collaboration represents the medium as a whole.

Depending on their needs, components use some services of the medium, but
not all of them. For instance, in a broadcast medium, a component wanting to
send information only uses a broadcast service. On the other hand, a component
wanting to receive information uses a receive service. Components are differenti-
ated depending on the role they play from the medium point of view. With each
role is associated a list of services. For example, a broadcast medium defines a
sender and a receiver role. These roles match the roles used in UML collabora-
tions. Since a medium specification is a collaboration, components connecting
to a medium play a given role in this collaboration.

As for any classical components, mediums require a good specification in or-
der to make them easily usable. A “good” specification includes all information
that describes how to use the component, but also what it does. This could be
encapsulated in a contract as we propose in [4]. This contract must include the
required and offered services signatures, but can not be limited to these. The
semantics and the dynamic behavior of services must also be specified.

The specification in UML of a medium is made by combining three “views” :

— a collaboration diagram for the structural view of a medium. This collab-

oration contains all the roles that can be played by the components, a class
representing the medium (called MediumName Medium®) and all the elements
necessary to describe the behavior of the medium and of its services.
For each role, the class representing the medium in the collaboration imple-
ments an interface (called IRoleNameMediumServices) containing the ser-
vices offered to the components playing this role. This interface is the type
of the role. A “RoleName” role implements an interface (called TRoleName-
ComponentServices) providing the services the medium would call back.

3 We have chosen to use naming conventions for classifiers involved in medium speci-
fications, but of course we could have used UML stereotypes instead. For instance,
the class representing the medium could have been stereotyped by << medium >>.

Messages representing interactions resulting from a service call can be added
onto the collaboration diagram. An interaction can be associated with each
service.

— OCL constraints [17] for specification of the medium invariants and the
static behavior of a service (specification of pre and postconditions on each
service).

— statecharts for specification of dynamic behavior. This view allows tempo-
ral constraints, synchronization, locked conditions, etc. to be described.

The use of OCL links all these views formally. We generalize the use of
OCL everywhere possible. In particular, we use OCL for specifying the guards
and conditions of messages in collaborations and in statechart transitions. OCL
expressions are defined in a precise context. For a message in a collaboration, the
context is the sender of the message. For a transition in a statechart associated
with a class (or with an operation of this class), the context is this class.

Of course, other UML diagrams such as sequence or activity diagrams can
also be used to specify a medium in addition to those described above. Actually,
all the UML features can be used. But we believe that these three views are
sufficient in most of the cases.

3.2 Example: specification of the reservation medium

The reservation medium is the medium we have used in the context of the car
park and the airline applications. The following specification details the structure
of the collaboration according to the specification principles we have given above.
Other medium specifications can be found in [5].

Informal description. The reservation medium manages a set of identifiers
(seats in a plane, car park places. ..) that can be reserved by a group of compo-
nents. Some components can observe the state of the medium: after any reser-
vation or cancellation of a reservation, they are informed on the new number of
available identifiers.

The roles of components and their associated services are the following:

source role
this single component owns the set of the reservation identifiers and calls the
following service on the medium to initialize it :
— void setReserveldSet(Reserveld setId[],
Boolean cancelerIsReserver):setIdis the set of the reservation iden-
tifiers. cancelerIsReserver indicates if the component that cancels a
reservation must be the one that has made the reservation (true value)
or can be any component (false value).
reserver role
the components playing this role can make reservations and cancel them by
calling the following services :

— Reserveld reserve(): return one available reservation identifier of the
set (and remove it from the set). Return null if there is no more available
identifier.

— Boolean cancel(Reserveld): cancel a reservation whose identifier is
passed as parameter. Return false if the three following conditions are
not verified:

1. The identifier belongs to the original set.
2. The identifier does not belong to the available set (i.e. it is reserved
at the present time).
3. If cancelerIsReserver is true, the component that does the can-
cellation is the one that has made the reservation.
Return true if these conditions are verified and the identifier is again
available to the reservation.
observer role
these components have to implement the following service, in order to be
informed of the change of the available identifier number:

— void nbAvailableId(Integer newValue) : the parameter indicates the

new number of available identifiers.

<< interface >>

/source| N ISourceMediumServices
setReserveldSet(Reserveld[])
reserved
Ireserver ReservationMedium available * | Reserveld
*
Boolean usable = false
Boolean cancelerlsReserver originalSet *
observer;
/observer << interface >> << interface >>
% :])
IReserverMediumServices I0bserverComponentServices
Reserveld reserve() nbAvailableld(Integer)
cancel(Reserveld)

Fig. 6. Collaboration describing the reservation medium

Collaboration diagram. The structural diagram of the collaboration is fig-
ure 6. Its design follows the specification rules described in section 3.1.

The ReservationMedium class represents the medium as a whole. It imple-
ments the two interfaces of offered services. The components playing the source
and reserver roles are each one dependent on one of these interfaces, i.e. they
are using their services. The observer role must implement the I0bserverCom-
ponentServices in order to be informed of the change of the number of available
identifiers.

The ReservationMedium class manages the set of available reservation iden-
tifiers (link available) and keeps a reference on the original set (link original-
Set). The reserved link allows the medium to know if an identifier is reserved
or not and by which reserver role.

The multiplicity of the links between a role and the Reservation Medium
class on the role side allows the number of role instantiations to be specified.
Here, one and only one source role must be present. The number of reserver
and observer roles is unspecified.

Isource A.1 setReserveldSet(set)
Ireserver B.1id = reserve() ReservationMedium
* itinbeiithiid. 4

C.1 cancelReturn = cancel(id)

lobserver|* ‘

A.2 nbAvailableld(available —> size)
B.2 [id != null] nbAvailableld(available —> size)
C.2 [cancelReturn = truel nbAvailableld(available —> size)

Fig. 7. Dynamical view of the reservation medium

Figure 7 is the dynamic view of the collaboration including messages sent
among the roles. It shows the relations between the services: each time the set is
modified, the nbAvailableId method is called on the observer components. We
use OCL-based expressions for the parameter of this method and the guards of
the messages. The context of these OCL expressions is the sender of the message,
here the MediumReservation class. For example, the parameter of this method
is the result of the OCL expression avalaible -> size that returns the size of
the set available.

OCL specifications. OCL is used to specify the static semantics of the medium
offered services and medium properties.

The setReserveIdSet service is used for the medium initialization. Figure 8
gives its OCL specification. The goal of this service is to initialize the medium.
The call of this service can be done only once and before this call, the medium
is considered as unusable, i.e. the medium services can not be called. The pre-
condition then checks the usable property that must be false. After the call, it
is set to true. In the OCL specification of the reserver services, the precondition
will check that this property is verified.

The postcondition specifies that the original and available identifier set (re-
spectively the originalSet and available reference) are equal to the set passed
as parameter. The set of the reserved identifiers must be empty for each reserver
manager.

OCL specifications are also defined for the reserver services: the reserve
and cancel methods (they are not described in this paper?). They ensure that
the semantics (described in section 3.2) of a reservation and its cancelling are
respected. Medium invariants insuring the set consistency and describing the
relations between the reserved, originalSet and available sets will have to
be written in OCL.

context ReservationMedium::setReserveldSet(Set idSet, Boolean cancel)
pre: usable = false
post: originalSet = idSet

and available = idSet

and usable = true

and cancelerlsReserver = cancel

and reserver —> forAll(r | r.reserved —> isEmpty)

Fig. 8. OCL specification of the setReserveIdSet service

Statecharts. No statechart is needed in the specification of the reservation
medium.

3.3 Finding the medium frontier and services

The first section of this paper shows that a collaboration is more reusable if it is
“self-contained” and not “too simple”. This is a very intuitive way to define the
frontier of a collaboration. The frontier allows us to know what the responsibility
of the collaboration is (data to handle, services to implement, etc.) and what is
external to it. The definition of the frontier of a medium or a classical component
is a key point.

Some component-based application specification processes based on UML
such as UML Components [7] or Catalysis [8] propose to define a component’s
frontier and its responsibility by finding its types. A type specification is the
definition of a set of services (grouped in an interface) and their semantics.
All features and attributes that are necessary for specifying the services must
be added in a static diagram associated with the type. These features are for
instance the data manipulated by the services. OCL constraints are also used in
these specifications. A component implements one or several types. These types
are defined at an abstract level without any assumptions about implementation;
they describe the usage contract of a component.

We propose to adapt this type definition to the context of mediums. As
a medium is a component, it must also specify its usage contract and thus

4 For a complete specification of the reservation medium, the reader is invited to
consult our web site: http://www-info.enst-bretagne.fr/medium/

its type(s). The abstract specification of a medium is a UML collaboration.
Therefore finding the type of a medium allows us to define the responsibility
and the frontier of the collaboration at the highest level of specification.

In the case of our reservation applications, the collaborations are used to
reserve identifiers. A reserver component needs for instance to call a reserve
service. This service belongs to the interface of the type. The service will return
an identifier that was available. So the available identifier list is mandatory for
specifying the service and it belongs to the type specification. Thus, this is
the “correct” justification for placing the identifier set in the collaboration (see
figure 6) as a service offered manipulates this set. The ReservationMedium has
references on the set of identifiers because they are mandatory for specifying the
reserve service behavior.

This process invites us to place the identifier set inside the medium, but we
could have chosen to delegate its management to an external component (as it is
done in figure 1. This latter solution has to be rejected since (1) the collaboration
abstraction loses its coherence and becomes almost useless and (2) it constrains
a design or implementation choice with a premature decision.

In our collaboration, components that play a reserver role need to reserve
and cancel identifiers. So the reserve and cancel services have to be imple-
mented by the medium. The observer components are kept informed on the
number of available identifiers. In order to do so, they need to implement the
nbAvailabelld service. By looking at the need of these two kinds of compo-
nents, we found two interfaces of services (the IReserverMediumServices and
IObserverComponentServices).

As the collaboration or the medium handles the identifier set, a service
must be added for the source component to specify the set to use. This is the
setReserveldSet service of the ISourceMediumServices. This last service was
discovered after a first iteration of the process.

We can summerarize the guidelines for finding the medium frontier and re-
sponsibility as follows:

— Find the services offered and required by the medium.

— These services are used to define offered and required interfaces associated
with each role.

— Define the service semantics with OCL constraints or other UML features.
This implies adding all the necessary classifiers and associations to the col-
laboration diagram.

— Reiterate the first three steps to find new services if needed.

— No implementation assumptions must be made during these specification
steps.

Once the medium type is specified through its collaboration diagram, the
interaction frontier and responsibility are completely defined. This is done at an
abstract level, independently of any implementation constraints or choices.

4 Related Works

The specification of collaboration or interaction abstractions has been studied
extensively. Our methodology is not revolutionary but is simply a new vision
of these interaction abstraction specifications in the context of software compo-
nents. Moreover, an important aspect of our methodology is that it is included in
a whole process. The goal of this paper has been only to speak about specifica-
tion, but readers interested in other parts of the process are invited to read [6] or
to consult our web site®. In particular, this process is composed of a specification
refinement process allowing a high-level medium specification to be transformed
into lower level ones according to implementation and deployment constraints.
We have also defined an internal medium architecture at the implementation
and deployment level and built a framework to implement them.

Some following related works will not only discuss the specification level but
also include some other parts of the whole process.

4.1 Architecture Description Languages

A wide field of software engineering concerns software architecture and languages
to describe it [1,12]. Research goals are to improve maintainability, evolutivity,
and reusability. The ACME [9] language, for instance, enables us to describe a
system as an assembly of components and connectors. Connectors reify inter-
actions among components; they mediate the communication and coordination
activities among them.

The main difference between the ADL approach and ours is that event if
ADL connectors are, in principle, as abstract as possible, ADLs eventually pro-
pose a small set of connectors that are usually very close to existing ”low-level”
communication services, such as RPC, Unix pipes, SQL-link, http-link, etc.

We consider that the interaction specification has to be used at architectural
level with, if possible, no hypothesis on the implementation. An implementation
variant resulting from the refinement process also has to be selected depending
on the application context (performance, size, middleware, systems, etc.).

4.2 Coordination components and languages

In order to improve the separation of the objects’ essence and their interaction
requirements, some authors propose object connectors [10,15]. Connectors con-
tain the required glue to make objects interact. This approach, like ours, reifies
interactions which are usually described with a coordination language. In some
implementations the refinement process consists of a compilation, which is more
abstract, but prevents implementation variants; connectors are dedicated to a
specific application making them potentially less reusable than if they were de-
veloped from standard interactions such as we propose. Another approach [11]

% http://www-info.enst-bretagne.fr/medium/

uses collaboration contracts which is more flexible since collaboration rules can
be dynamically updated.

Most coordination models rely on an explicit interface of components being
coordinated [11], but some use introspection and metaprogramming features to
coordinate components that hide their interface [10]. However, we consider the
coordination problem as a subproblem of communication, limited to message-
passing models®. Until now, we have not specified a medium dedicated to col-
laboration but we imagine it would be possible; a collaboration medium would
be programmed using a coordination language and would observe events on its
entries and trigger events as specified.

4.3 Catalysis

Catalysis [8] is a methodology that is component centered. It uses a notation
based on UML to describe models, components and implementations. The con-
cept of collaboration is central in this approach. A collaboration is a collection
of actions and the types of objects that participate in them. Moreover, Catalysis
defines the notion of collaboration frameworks that are kinds of generic collab-
oration. Catalysis collaboration frameworks resemble our medium specifications
since a catalysis connector is specified by a collaboration framework (a medium
being a kind of connector). But Catalysis proposes to define only a small set of
connectors that can be used during the implementation. We believe that com-
munication abstractions between distributed components cannot be limited to a
small set of low-level interaction patterns, even at the implementation level. We
argue that every communication abstraction can be manipulated as a connector
or a medium, independently of its complexity.

Finally, although Catalysis offers a methodology to refine its models and
to keep track of the successive refinement steps and, although collaborations
are proposed to be refined in connectors, Catalysis proposes no real process or
implementation target as we do. We imagine the work presented here as being
an extension of Catalysis methodology.

5 Conclusion

We have presented an approach to reify high-level interaction abstractions into
full-blown software components: interaction components or mediums. At the
specification level, a medium is specified by a UML collaboration augmented
with OCL constraints and any necessary UML diagrams. Since a medium is a
component, the specification methodology we have described follows rules spe-
cific to the component context.

A very important issue is, like for any component, to define the medium
frontier, i.e. to specify the services it offers and what its responsibility is. We
have given guidelines to find this frontier by defining the medium abstract type.

5 Even Linda which emulates asynchronous message-passing through a shared memory.

This paper has only focused on medium specification methodology but this
methodology is involved in a more global process allowing the manipulation
and the reutilization of high-level interaction abstractions throughout the soft-
ware process, from analysis to implementation and deployment. In particular, we
have worked on a refinement process that transforms an abstract UML medium
specification into an implementation specification according to some implemen-
tation and deployment constraints. This allows several implementations of the
same interaction abstraction to be made and the designer to choose the right
one according to an application context. An interactive video application using
two mediums (one for the multimedia stream broadcast and one for the vot-
ing system) has also been implemented (thanks to our implementation medium
framework) and has shown the benefits of having complex interactions at the
implementation level.

Given that it is now possible to easily instantiate high-level interaction ab-
stractions, we believe that this will lead designers to definitively consider and
use collaborations as first-class architectural entities at both design and imple-
mentation time.

References

1. R. J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University, 1997.

2. E. P. Andersen and T. Reenskaug. System design by composing structures of
interacting objects. In O. L. Madsen, editor, ECOOP’92, European Conference on
Object-Oriented Programming, Utrecht, The Netherlands, volume 615 of Lecture
Notes in Computer Science, pages 133-152, New York, NY, 1992. Springer-Verlag.

3. A. Beugnard. Communication services as components for telecommunication
applications. In 14th European Conference on Object-Oriented Programming
(ECOOP’2000), Objects and Patterns in Telecom Workshop, Sophia Antipolis and
Cannes (France), 2000.

4. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components
Contract Aware. Computer, pages 3845, July 1999.

5. E. Cariou and A. Beugnard. Specification of Communication Components in UML.
In H. Arabnia, editor, The 2000 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA ’2000), volume 2, pages
785-792. CSREA Press, June 2000.

6. E. Cariou, A. Beugnard, and J.-M. Jézéquel. An architecture and a process for
implementing distributed collaborations. In The 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2002), September 2002.

7. J. Cheesman and J. Daniels. UML Components - A Simple Process for Specifying
Component-Based Software. Addison-Wesley, 2000.

8. D. D’Souza and A. Wills. Objects, Components and Frameworks With UML: The
Catalysis Approach. Addison-Wesley, 1998.

9. D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture description inter-
change language. In Proceedings of CASCON’97, pages 169-183, Toronto, Ontario,
November 1997.

10. M. Giinter. Explicit connectors for coordination of active objects. Master’s thesis,
University of Berne, 1998.

11.

12.

13.

14.
15.

16.

17.

18.

L.Andrade, J.Fiadeiro, J.Gouveia, A.Lopes, and M.Wermelinger. Patterns for co-
ordination. In G.Catalin-Roman and A.Porto, editors, Coordination Languages
and Models, pages 317-322. LNCS 1906, Springer-Verlag, 2000.

N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. Technical Report UCI-ICS-97-02,
Department of Information and Computer Science, University of California, Irvine,
1997.

OMG. Unified Modeling Language Specification, version 1. 3.
http://www.omg.org, June 1999.

T. Reenskaug. Working with Objects. Manning/Prentice Hall, 1996.

M. Shaw. Procedure Calls Are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. In D. Lamb, editor, Studies of Software
Design, Proceedings of a 1993 Workshop. Lecture Notes in Computer Science 1078,
Springer-Verlag, pp. 17-32, 1996.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM
Press and Addison-Wesley, New York, N.Y., 1998.

J. Warmer and A. Kleppe. The Object Constraint Language : Precise Modeling
with UML. Addison-Wesley, 1998.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software.
Prentice-Hall, 1990.

