Semantic Mappings between Service, Component and
Agent Models

Nour Alhouda Aboud Eric Cariou Eric Gouardéres
LIUPPA / Université de Pau LIUPPA / Université de Pau LIUPPA / Université de Pau
B.P. 1155 B.P. 1155 B.P. 1155
64013 PAU CEDEX, France 64013 PAU CEDEX, France 64013 PAU CEDEX, France

Nour- _ Eric.Cariou@univ-pau.fr Eric.Gouarderes@univ-
alhouda.Aboud@univ- pau.fr
pau.fr
Philippe Aniorté
LIUPPA / Université de Pau
2 Allée du parc Montaury
64460 ANGLET, France
aniorte@iutbayonne.univ-
pau.fr
ABSTRACT 1. INTRODUCTION

Regarding the design and the development of distributed ap-
plications, service, component and agent oriented approaches
provide their own interests and characteristics. Most of cur-
rent applications are designed according to a single approach
but it would be interesting to use these approaches simulta-
neously to provide a more efficient paradigm for developing
distributed applications. Our goal is to integrate these three
approaches by focusing on the concepts of service and inter-
action as key points, notably regarding cooperation between
agents and components. The service is the business abstrac-
tion of a component or agent and it represents a pivot to
support its interactions. We presented previously our ser-
vice, component and agent models for this purpose. In this
paper, we establish the semantic mapping rules between the
concepts of each of these domains to be able to move on
from one model to another.

Categories and Subject Descriptors
D.2 [Software Architectures]: Languages

General Terms
Design

Keywords

Component, agent, service, semantic mappings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CBSE’12, June 26-28, 2012, Bertinoro, Italy.

Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

Regarding the design and the development of distributed
applications, service, component and agent oriented approa-
ches provide their own interests and characteristics. Services
provide the interests of abstraction and large-scale interop-
erability. Abstraction in the sense that a service specifies
a functional element without specifying how this element
is implemented (by a component or an agent for example).
Components are a robust approach based on the composition
and the reusing of clearly defined elements through their in-
terfaces. Agents' are elements with dynamic goal-directed
behaviors and using high-level interactions with the other
agents forming an application. Figure 1 represents the main
advantages and complementary aspects of these approaches.
Unfortunately, these specific advantages of each one are not
shared between all of these three approaches. For example,
[4, 9] highlight the lack of reusability on the agent side and
[3] highlights the lack of reasoning ability and dynamicity
on the component side.

Service

Abstraction
Interoperability

Behavioral & Goal driven
High-level interactions

Composition
Reusability

Agent Component

Figure 1: Relations between services / agents / com-
ponents

However, it would be interesting to benefit from all these
characteristics within a same application. Then, the aim

'In this paper, when we talk about agents, we refer system-
atically to the Organizational MultiAgent Systems (OMAS).

of our work is to integrate these three approaches. We fo-
cus on the concepts of service and interaction as key points,
notably regarding cooperation between agents and compo-
nents. The service is the business abstraction of a compo-
nent or of an agent and it supports interoperability between
them by considering that a service can be implemented ei-
ther by an agent or by a component. To serve this purpose,
we presented earlier in [2] our service, component and agent
models. In this paper, we define the semantic mappings be-
tween the concepts of each of these models to move on from
one domain to another. With a Model Driven Engineering
(MDE) approach, these models are DSMLs (Domain Spe-
cific Modeling Languages) and the semantic mappings will
be implemented by model transformations.

The rest of this paper is organized as follows. Section 2
reminds our design process and its three models of service,
component and agent, and section 3 defines the semantic
mappings between these three models. Then, we conclude.

2. REMINDER OF SERVICE, COMPONENT
AND AGENT MODELS

In order to well understand the contribution of this pa-
per, we remind firstly in this section elements we already
presented in [2].

2.1 Design process

Service Model

Abstract models

Agent Model
7

Concrete models

[- - = >Componentification -3 > Agentification = ——>Projection ‘

Figure 2: Integration process of service, component
and agent approaches

Our general proposition for the integration of service, com-
ponent and agent approaches is based on a design process
described in figure 2. The process contains four main mod-
els (four DSMLs in a MDE approach). At the most abstract
level, we find our service model that describes an applica-
tion only through interacting services. Therefore, it focuses
on the business specification of an application. At a lower
level, the same application is specified by defining the con-
crete elements implementing these services: we use either
only components, only agents or a mix of them. For this
purpose, we use respectively the models of component, agent
or CASOM (for Component Agent Service Oriented Model)
which incorporates the concepts of agent and component.
Our component and agent models as well as CASOM are
general and abstract. It is possible to project their spec-
ification onto a concrete technological model, like EJB? or
Fractal [5] for components, AGR [7] or OMNI [11] for agents
or AC [8] for a mixed component/agent approach. The pro-
cess can be used in several ways: by a top-down approach,

2http://www.oracle.com /technetwork/java/javaee/ejb/

as mentioned above where we define at the abstract level
the interacting services of an application, then we project
these services towards components, agents or a mix of them
before projecting this new specification onto a concrete tech-
nological platform. We can carry-out a reverse approach (a
bottom-up one), that is processing reverse engineering. Fi-
nally, we have a middle-out (horizontal) approach where we
transform existing specifications of agents into components
and vice versa via respectively the componentification and
agentification actions.

In the current state of our work, the three models of ser-
vice, component and agent are defined and have been pre-
sented in [2]. In this paper, we propose the semantic rules of
transition between the concepts of these three models, that
is, the rules corresponding to the arrows between these three
models in our process.

There are already many general or abstract models of com-
ponent or agent. Nevertheless, we decided to define our own
models since none of the existing models satisfactorily in-
tegrates explicitly both aspects of interaction and service.
These aspects are the keys in our approach to integrate com-
ponents and agents as explained in the introduction. Sim-
ilarly, we defined our service model as none of the existing
models completely satisfies our need of abstraction, namely
not to specify the elements performing the services. [1, 2]
describe the existing models of service, component and agent
we studied in order to define our three models.

2.2 The three models

Our three models of service, component and agent are
shown in figure 3. They are 3 different models (shown as
UML class diagrams) but we decided to superimpose them
in one figure. Besides the interest of this view in saving
space compared to 3 separate diagrams, it shows visually
the common and shared concepts between our three mod-
els, such as service and interaction. This allows to give a
first idea of the general relationships between these models.
Complementary OCL constraints (not presented here due to
lack of place) fully specify these diagrams. In the following
subsections, we summarize the content of our 3 models (for
more details, see [2]). The terms in italics correspond to the
concepts of the models.

2.2.1 Service model

A service is composed of operations through service points.
A service point regroups operations in a required or a pro-
vided mode. Then, a service is the logical assembly of sets of
operations; some sets are provided and others are required
(this is done as services are defined in WSDL for instance).
A service can be composite, that is structurally composed
of other services, or it can be a leaf primitive. Different
services interact between each other via interactions associ-
ated with their service points. A service plays a given role
in an interaction. There are two main types of basic interac-
tion: function calls (RPC / RMI) between a required service
point and a provided one or a delegation between a service
point of a composite service and another service point of the
same type of one of its internal services. If an interaction is
complex, then we use a protocol to define it.

Finally, the concept of application corresponds to a global
application or system. Since an application is formed of in-
teracting services, it is viewed as a special kind of composite
service.

~| composite

T Primitive S —

. ”} <

Composite

- Primitive
1

.

Service
e Companent
b 1 fname
type ! interactionalRoleTypes 5|‘ Fp gl £
=]
upperbound T I
lowerbound I e e
Operati
porafion Parameter
name
pasiC In % kname \
<<<<<< preCondition |- oul 2/ iFyPe
~ 1
o
Capability ¥
type : Capability Types o
Protocol B
= Types |
Messages g
FRPC/RMI
T R R e i S NN NSRS NSNS NNSSENIN he VIR cumamsODCI00 Delegation

| capabilityTypes

- [FPerception

Basic

' [+Communication

Type

| [+Reasoning
[*Decision

 [ype CoordinationTypes

Hype : NegotiationTypes

- Hype : communicationTypes

Connector

agnumearations

CoordinationTypes || icati Type!:

bl

- [iDrganizabonalStruciure | [‘BasicProtocol . [Provided
2 i [|+FIPA ACL | [Required
oML | Jrother

Colors of models concepts

T / D Component

D Component & service
shared concepts

D Service
D Agent

Component, service &
agent shared concepts

Figure 3: Unified view of the three models (service, component and agent)

2.2.2 Component model

A component is a reusable entity with well specified in-
teraction points named service points. Each service point is
associated with a service® in a required or a provided mode.
A service is composed of operations. A component can be
primitive or composite when it is structurally composed of
other components. Different components interact with each
other via interactions associated with their service points.
A component plays a given role in an interaction. There are
two main types of basic interaction: functions calls (RMI /
RPC) between a required and a provided service points of
different components or delegation between a service point
of a composite component and another service point of the
same type of one of its internal components. If a more com-
plex interaction is required between the service points of
different components, it is realized by a connector which im-
plements a protocol. A connector component is a special kind
of component dedicated to communication between compo-
nents [6]. Then, it is also a connector and it implements a
protocol.

Finally, the concept of application corresponds to a global
application or system. Since an application is formed of in-
teracting components, it is viewed as a special kind of com-
posite component.

3In component approaches, another vocabulary is generaly
used: a port for a service point and an interface for a service.
We used these terms to name the common concepts between
our three models in the same way.

2.2.3 Agent model

In our work, the notion of agent is related to the orga-
nization centered multi-agent systems. In the context of
“service-oriented computing” which focuses on the notions
of interaction and service, an organization provides ways
to build systems of collaborative services [10]. An orga-
nization is associated with a functional goal which can be
decomposed onto several sub-goals. These sub-goals are as-
sociated with groups that present the structural entities of
an organization and define the actors and their roles within
it. In this context, an agent is an autonomous rational en-
tity (associated with a goal) that plays roles in a group. A
functional role allows the specification of an agent’s tasks or
behaviors through a service. A service is a set of operations.
An interactional role defines the responsibilities assumed by
an agent in an interaction with other agents. Particularly,
it allows to provide or to require services. To play a given
role, an agent must own certain capabilities like perception,
communication and reasoning.

Generally, the agents interact with each other through
their interactional roles by using high-level interactions (com-
munication languages (such as FIPA-ACL), negotiation, co-
ordination) based on protocols.

3. SEMANTIC MAPPINGS

In this section, we establish the semantic mappings be-
tween the concepts of each domain basing on our three pre-
viously presented models. Specifically, these mappings allow
the transformation or the translation of a specification for

Table 1: Service / component / agent mappings

| Service side

Component side

Agent side

Primitive service

Primitive component

Agent with a goal by default

Composite service with internal ser-
vices

Composite component with internal
components

Group containing an agent for each in-
ternal service/component™ with a goal
by default

Application

Application

Organization with a goal by default

Provided (resp. required) service
point of a service and its set of opera-
tions and playing a role

Service of a component with the same
set of operations

Functional role with the same set of
operations

Provided (resp. required) service
point of a component with the same
set of operations and playing a role

Interactional role with the type of
the service point (provided or required)

Interaction associated with a proto-
col between service points

Connector associated with a pro-
tocol between the equivalent service
points

Interaction associated with an equiv-
alent protocol between the equivalent
interactional roles

Basic interaction of a given type be-
tween service points

Basic interaction of the same type
between the equivalent service points

Communication of basic protocol
type! between the equivalent interac-
tional roles

* Only if these internal components or services are primitive. See section 3.3 for the explanations.
t Except for the delegation of the service and component models. See section 3.3 for the explanations.

one model to another one. Table 1 gives the main mappings
between the concepts of the three models. Due to lack of
place, we are not able to present some examples to illustrate
our mappings but they are available online*.

3.1 Services and service points

The service and component models are very close. We can
consider the component model as a direct projection of the
service one by adding the elements implementing the ser-
vices, that is, the components. In the same way, an agent is
an element implementing services. However, there are some
differences between the three models for the management of
the services.

The particularity of our service model is in not defining
explicitly the elements supporting the implementation of the
services (components or agents in the other models). In the
service model, a service contains several sets of operations,
each set being associated with a provided or required service
point. Here, the service acts as a logical link between these
sets of operations. On the component side, this notion of
global and logical service disappears since the component
becomes its concrete implementation. Then, each set of op-
erations of a service associated with a service point in the
service model is mapped onto the same set of operations
associated with the service point of its equivalent compo-
nent. On the component side, we name “service” this set of
operations associated with a service point. A component is
then associated with multiple services — each service is a set
of operations — which correspond to the sets of operations
of the service points on the service model side. Therefore,
the concept of service, even if consistently associated with
operations, is not exactly the same in both models.

Similarly to a component, an agent is an element realizing
the implementation of services but it does not directly man-
age services or service points. In an organizational multi-
agent approach, all interactions between agents are done

*http://web.univ-pau.fr/%7Eecariou/casom/

through roles: the interactional roles enable an agent to
provide or to require services and these services are defined
through functional roles. In the agent model, a functional
role is defined as a specialization of the concept of service
which is abstract. Then, a functional role on the agent side
is mapped onto a service point with its associated opera-
tions on the service side or onto a service and its associated
operations on the component side. Associated with a func-
tional role, a provided (resp. required) interactional role on
the agent side is mapped onto a provided (resp. required)
service point on the service or component side.

3.2 Interactions

There exist two main kinds of interaction, the basic ones
and the high-level ones. Concerning the basic interactions,
there are direct mappings between the three models. The
concept of basic interaction is the same in the service and
in the component models. This concept is mapped onto the
one of communication of a basic protocol type on the agent
side (excepting in the case of a delegation because it does
not exist in the agent model as explained in section 3.3).

The high-level interactions are defined through a protocol
in the three models. However, this protocol is not managed
in the same way depending on the model. On the service
side, the protocol is used solely to define a high-level inter-
action. On the component side, a connector is implementing
such a protocol. Actually, the connector plays the same kind
of role as the component as being the concrete support for
realizing an abstract concept: the component realizes a ser-
vice and the connector realizes a protocol. On the agent side,
there is a richer classification based on three main types of
interactions (communication, coordination and negotiation).
Then, we do not have the same level of details on the agent
side compared to the service and component sides. When
moving on from agent to service or component side, a non-
basic interaction is systematically associated with a protocol
(and a connector on the component side), but in the other
direction, an automatic default choice must be made or the

designer must choose between one of the three types of in-
teractions.

When an agent interacts with other agents via a protocol,
it must own the required capabilities in terms of communica-
tion (language and basic protocols for example, FIPA ACL,
FIPA Query, FIPA Request,...) and possibly reasoning and
decision making (coordination, negotiation) in order to play
the associated interactional roles through this protocol. Un-
fortunately, on the service or component side, there are no
equivalent concepts for the capability one. Then, when mov-
ing on from the agent model to the service or component
one, all these elements will be “removed”; while in the other
direction, the designer must add or modify these elements
manually on the automatically default obtained specifica-
tion.

3.3 Hierarchical structures

The base of our mapping rules is that a primitive service
is mapped onto a primitive component, both being mapped
onto an agent. With the same logic, a composite service with
internal services is mapped onto a composite component
with internal components mapping these internal services.
However, we do not find an equivalent concept for compos-
ite on the agent side. Indeed, the organizational structure
of the agent model offers only two levels: the group and the
agent. A group is a logical structure containing only agents.
This causes problems for hierarchical composition of more
than 2 levels (for example, a composite service containing
composite services5). One way to overcome this problem is
to use shared agents between different groups to represent
the structural levels of an organization. This approach is
used in AGR model for instance [7]. If an agent member of
a group of level n is also member of the group of level n+1,
then it can be considered as the representing element of the
group of the lower level and all the interactions between the
two levels must be managed by this agent. Another prob-
lem deals with the delegation of external service points to
internal ones for a composite service or component: such
a delegation principle does not exist on agent side. When
we transform a composite service or component to a group
of agents, we consider only the service points of the inter-
nal services or components to create the functional roles of
the agents (the same set of operations is associated with an
internal service point and with its delegated external ser-
vice point on the composite service or component). For the
other direction, from agents to services or components, we
must create external service points on the composite and
the required delegations between internal and external ser-
vice points.

The absence of the composite concept on the agent model
makes the transformation of an application (on the service
or component model) more complex. Intuitively, one can
consider a mapping between the concept of application of
the service or component model and the concept of organi-
zation of the agent one. The problem is that an organization
is containing only groups and cannot directly contain agents.
In this case, when moving on from the service or component
side to the agent one, each primitive service or component
directly contained in the application is mapped onto a single

5For this reason, regarding agents, the table 1 presents the
mapping of a composite service or component containing
only primitive ones. In this case, the mapping is direct and
simple: it is a group composed of agents.

agent that is contained in a dedicated group. The compos-
ite services or components contained in the application are
directly mapped onto groups and agents as explained in the
previous paragraph. For the other direction, as an organi-
zation is always composed of groups, there is no problem to
move on from the agent model to the service or component
one.

3.4 Specific elements of a domain

Some elements or concepts are specific to a given model
and have no direct mapping, or no mapping at all, on the
other models. The connector component is a specific element
of the component model. Such an element is a component
but associated with a protocol as it is also a connector. In
the direction from the service or agent model to the com-
ponent one, there is no mapping between elements of the
service or agent model and the component connector ele-
ment (except the mapping variant bellow). In the other
direction, from the component side towards the service or
agent one, the component connector concept is viewed as a
regular component by applying the rules of table 1 and sec-
tion 3.3 for a primitive or composite component according
to the structure of the component connector. The only dif-
ference is that its associated protocol is ignored. However,
in addition for the mapping to the agent side, the designer
can manually add to the mapped agent(s) the required ca-
pabilities to implement this protocol.

On the agent side, the table 1 presents for several map-
ping rules a “goal by default” for an agent, a group or an
organization. Indeed, each of these elements must have a
goal but this concept of goal does not exist on the service
or component side. When moving on from the service or
component side to the agent one, it means that the added
goal has a description field which is not specified. The de-
signer has to set it afterwards. In the other direction, from
agents to services or components, the goal associated with
an agent, a group or an organization is ignored.

Finally, still on the agent side, there are no equivalent con-
cepts for task (as for capability or goal) on the component or
service model. Then, when moving on from the agent model
to the service or component one, all these elements will be
“removed”, while in the other direction, the designer must
add or modify these elements manually on the automatically
default obtained specification.

3.5 Mapping variants

It is possible to consider variants of mappings instead
of some direct mappings presented above. The first vari-
ant consists in not transforming systematically a composite
(resp. primitive) element into a composite (resp. primitive)
element of another model. If the internal elements in a com-
posite (component or service) or in a group do not interact
with each other, we can transform this composite element
into a primitive element on another side®. This variant is
notably interesting in the case where we do not want, on the
service side, to specify a service as implicitly formed of pro-
vided or required sets of operations (via associated service

5If the internal elements are connected, this means that
the designer has explicitly specified internal interactions be-
tween these elements and that “merging” these elements in
just a single one would cause to lose these interactions and
the associated explicit internal structure. Then, there would
be information loss.

points) but explicitly dedicate each set of operations to a
particular service (that is, a primitive service that contains
only one service point), defining in this way a composite
service containing primitive ones. However, regarding the
component or agent side, it is more relevant to have a sin-
gle primitive component or a single agent as each set of
operations is directly associated with a service point of the
component or with a functional role of the agent, then with
a single service.

A second variant consists, on the component side, to pre-
fer using a primitive component connector instead of a con-
nector to map a complex interaction of the service or agent
side.

4. CONCLUSION

Based on previously defined models of service, component
and agent, we established semantic mappings rules between
these models (including variants of mapping according to
the developer needs). These mappings are part of our de-
sign process for integrating service, component and agent
approaches to take advantage of the benefits of each ap-
proach in the specification and development of distributed
applications. As far as we know, there are no other works
that are interested in providing precise and implementable
definitions of mappings between the three domains of ser-
vice, component and agent (in the organizational field) as
we do.

The component model can be seen as an implementa-
tion of the abstract service model, where a component im-
plements a service and a connector a complex interaction.
Thus, there are bidirectional mappings allowing to move on
systematically and totally from a service specification to a
component one and vice versa. Regarding the agent side,
defining the mappings to the service and the component
models is a bit more complicated. The main concepts of
interaction and service have systematic bidirectional map-
pings but some secondary concepts exist only on the agent
side without equivalent in the other two models. From the
point of view of interactions, they are richer on the agent
side compared to the service and component sides. In re-
turn, the definition of the composition is less natural on the
agent side. These differences in interaction and composition
are actually quite logical: we retrieve here the strengths and
weaknesses of agent approaches regarding the other two ap-
proaches, as stated in the introduction.

The mappings we defined can be applied to our own ser-
vice, component and agent models. However these models
are relatively general by defining the main conceptual princi-
ples of each field. Our study of semantic mappings between
these three fields can also be considered as a “theoretical”
and general one, and not just dedicated to our models. It
is possible, through an adequate adaptation, to easily reuse
the principles of mappings we established for specific models
of service, component or agent.

The perspectives of our work consist mainly of two steps.
The first one is the definition of CASOM which is the mixed
model containing both component and agent aspects. In
addition to CASOM, we will define the relations between
CASOM and the other three models (service, component
and agent) by adapting the already established mappings.
We will also provide a design guide explaining in which con-
text it is more relevant to use agent or component features
in an application specification. The second step is the imple-

mentation of these four models and the semantic mapping
rules in a model driven engineering environment, in order
to concretely specify applications through our models. We
will use for this purpose the Eclipse/EMF platform’. Each
model will be implemented as an Ecore meta-model. Con-
crete model transformations will enable moving on from one
model to another.

5. REFERENCES

[1] N. A. Aboud, P. Aniorté, E. Cariou, and
E. Gouardeéres. Towards a Component Agent Service
Oriented Model (CASOM). Technical report,
LIUPPA / Université de Pau, July 2010.

[2] N. A. Aboud, E. Cariou, E. Gouardeéres, and
P. Aniorté. Service-oriented Integration of Component
and Agent Models. In Special session on Architectures,
Concepts and Technologies for Service Oriented
Computing (ACT4SOC) of ICSOFT 2011. SciTePress
Digital Library, 2011.

[3] F. Bergenti and M. N. Huhns. Methodologies and
Software Engineering for Agent Systems: The
Agent-Oriented Software Engineering handbook,
chapter On the Use of Agents as Components of
Software Systems, pages 19-32. Kluwer Academic
Publishing, 2004.

[4] J.-P. Briot, T. Meurisse, and F. Peschanski.
Architectural design of component-based agents: A
behavior-based approach. In 4th International
Workshop on Programming Multi-Agent Systems
(ProMAS 2006), volume 4411 of LNCS, pages 71-90.
Springer, 2007.

[5] E. Bruneton, T. Coupaye, and J.-B. Stefani. The
Fractal Component Model, 2004.
http://fractal.ow2.org/specification/index.html.

[6] E. Cariou, A. Beugnard, and J.-M. Jézéquel. An
Architecture and a Process for Implementing
Distributed Collaborations. In 6th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC’02). IEEE Computer Society, 2002.

[7] J. Ferber, O. Gutknecht, and F. Michel. From Agents
to Organizations: an Organizational View of
MultiAgent Systems. In Agent-Oriented Software
Engineering (AOSE) 1V, volume 2935 of LNCS.
Springer, 2004.

[8] R. Krutisch, P. Meier, and M. Wirsing. The agent
component approach, combining agents, and
components. In Multiagent System Technologies, First
German Conference (MATES’ 03), volume 2831 of
LNCS, pages 1-12. Springer, 2003.

[9] S. N. Schiaffino and A. Amandi. User - interface agent
interaction: personalization issues, Elsevier. Int. J.
Hum.-Comput. Stud., 60(1):129-148, 2004.

[10] M. P. Singh and M. N. Huhns. Service-oriented
computing - semantics, processes, agents. Wiley, 2005.

[11] J. VAzquez-Salceda, V. Dignum, and F. Dignum.
Organizing Multiagent Systems. Autonomous Agents
and Multi-Agent Systems, Kluwer Academic
Publishers, 11:307-360, November 2005.

"http://www.eclipse.org/modeling/emf/

