
SERVICE-ORIENTED INTEGRATION OF

 COMPONENT AND AGENT MODELS

Nour Alhouda Aboud, Eric Cariou, Eric Gouardères and Philippe Aniorté
LIUPPA / Université de Pau et des Pays de l'Adour, France

{Nour-alhouda.Aboud, Eric.Cariou, Eric.Gouarderes}@univ-pau.fr,

Philippe.Aniorte@iutbayonne.univ-pau.fr

Keywords: Components, agents, services, specification process.

Abstract: Multiagent systems and component-based systems are two mature approaches; each one owns strengths and

weaknesses points. Our goal is to integrate these two approaches by reaching a high level of connectivity

between them to overcome their shortages. The concept of service plays a key role in their interoperability.

Indeed, the relations between these three domains are manifold. From a service perspective, agents and

components are considered as service providers or consumers while services can be seen as their functional

abstractions. Therefore, the concept of service as the interaction point between agents and component is the

base of our integration approach. We will define a specification process composed of several models. They

are dedicated to specify an application through several aspects: abstract services, components, agents and

mix of them. In this paper, we present a global view of this process and three of its models: service, agent

and component ones.

1 INTRODUCTION

Nowadays, information systems are distributed,

large-scaled, heterogeneous, open and complex. This

leads to the emergence of more high-level

technologies that interoperate between each other

and break the software's isolation. We can cite multi

agent systems in artificial intelligence domain and

component-based approaches and service-oriented

architecture in software engineering domain. Each

approach owns strengths and weaknesses points. Our

goal is to integrate these approaches by reaching a

high level of connectivity between them to

overcome their shortages.
 Service approaches view applications as sets of

services that interact between each other according
to their played roles and independently of their
locations, in order to satisfy heterogeneous and
loose-coupled software systems. These systems can
be built with any technology, for instance,
component or agent ones.

 Component approaches are based on the main

interest of reusing blocks of code that implement

well-specified interfaces (black boxes with access

points). This approach provides efficient solutions

for defining well-structured and robust applications

by composing and reusing existing components

(following for instance the Commercial Off the

Shelf (COTS) approach). The interfaces of a

component can be considered as the definition of its

services, while service approaches can be viewed as

logical extensions of component approaches as both

of them meet reusability and composition purposes.

MultiAgent System (MAS) is a paradigm for

understanding and building distributed systems,

where it is assumed that the computational elements

(the agents) are able to perform autonomous actions

in some environment. They are characterized by the

social ability to cooperate, coordinate, and negotiate

with each other (Wooldridge, 2009). There are two

main types of agents: reactive and proactive ones. A

reactive agent waits until being asked or responds to

changes in its environment, while a proactive agent

takes the initiative in decision making and

information gathering thanks to a goal-directed

behavior.

Organization MultiAgent Systems (OMAS) are

viewed as an effective paradigm for addressing the

design challenges of large and complex MAS, where

organizations are emergent whenever agents work

together in a shared environment. Many similarities

exist between OMAS and service oriented

approaches. They both meet the loose-coupled,

flexibility and dynamicity features. Organizations

are ways to makeup systems of collaborative

services (Singh and Huhns, 2005). The nature of

agents, as autonomous entities with auto-organized

capabilities and high level interactions, facilitates

automatic service discovery. For all these reasons,

we restrict our research to OMAS models; so they

are implicitly meant whenever we refer to agent

models in the rest of the document.

Component and agent approaches have then

some common points but each one has its own key

features which are not shared between them. For

instance, the work of (Lind, 2001) and (Schiaffino

and Amandi, 2004) reflect the lack of reusability in

agent approaches. The other limitation of agent

approaches is the loss of control caused by

autonomy properties of agent which reflects the need

for robustness properties. On the other hand,

components suffer from the lack of dynamicity and

reasoning features (Bergenti and Huhns, 2004).

Components need more open and abstract types of

interactions when they depend on provided services

of heterogeneous entities to accomplish composition

requirements. To summarize, a component is quite

equivalent to a reactive agent whereas an agent can

be viewed as a component that interoperates with its

peers by exchanging messages in a significant Agent

Communication Language (ACL) (FIPA-ACL,

2002).

Figure 1 represents the triangle relationships

among services, agents and components. Services

can be abstract specifications of agents and

components. Agents offer dynamical and behavioral

features versus reusability and composability ones

for components. Our goal is to implement this

triangle allowing the integration of agent and

component approaches to overcome their shortages

by adding features coming from the other domain.

Services play a key role as being an interoperability

pivot between agents and components.

We propose to define a specification process

allowing the specification of a same application

through several models: only as abstract services,

through agents implementing services, through

components implementing services and through a

mix of agents and components implementing

services. In this paper, we present a global view of

our specification process and we define three of its

models (service, agent and component ones) and

their relationships.

The rest of this paper is structured as follows: in

the next section, we present a motivating example

showing the interest of mixing agents and

components. An overview of the specification

process is given in section 3. Its component, agent

and service models are presented in section 4 with

the definition of their main concepts and a

discussion of their common points. Related works

are discussed in section 5, before concluding and

presenting some perspectives.

Figure 1: Triangle of relations between components, agents and

services.

2 MOTIVATING EXAMPLE

Figure 2 presents our case study. It is a typical

holiday reservation system. A client addresses the

travel agency to find his appropriate vacation

according to some criteria’s like the number of

persons, date, price, place and theme. This travel

agency is based on an OMAS approach where it

represents a group of agents (A1, A2). Each agent

owns his personal network of hotels and airline

companies according to geographical zones.

However, if an agent does not find a corresponding

hotel or flight reservation for the needs of the client,

he may negotiate with other agents within his group.

For instance, the agent A1 did not find the

appropriate flight in his network, so he negotiates

with A2 and makes a commitment with him to

reserve the flight. This commitment may include a

commission for A2 and an agreement of the quality

and reliance of the reservation process. Hotels and

airline companies are realized by components, where

they may be presented by a primitive component or

by a composite one (hotels X). Many reasons stand

behind our choices of representation: we mention

here that both of travel agency and client actors need

spaces of autonomy in taking decisions and

dynamicity in interacting with other parties in order

to negotiate and coordinate with them. The tasks of

these actors are not just about querying their

databases or reusing services for their sub branches

which are the case in hotels and airline companies’

actors.

We can see that there are many interactions between

components and agents in order to exchange their

services. A simple type of interaction can be

achieved by basic communication, such as a single

and basic service call, but this is not sufficient when

the parties need to negotiate for a price or a date to

make certain compromise to gain the trust of the

client. Unfortunately, there is no such flexibility in

the communication with components’ services.

Then, we need to have more complex and dynamic

communication protocols. At the same time, the

service provided by agents in the travel agency

(providing offers for vacation) can be useful in other

contexts. For example, the travel agency may

provide special offers for local products of the target

destination. But we cannot reuse this service in

different contexts as agents are not customizable.

Then, we need to design the same service for each

purpose. These two limitations reflect the need to

raise the level of interaction between agents and

components and to offer component features to

agents and conversely.

3 OVERVIEW OF OUR PROCESS

Our process is composed of a hierarchy of four

models as shown on figure 3. Three models are at

the same level: component, agent and mix of the two

approaches (in CASOM: Component Agent Service

Oriented Model). The more abstract model is the one

based only on services without requiring to define

the elements (agents or components) implementing

these services. As a result, these four models allow

the specification of an application by several ways:

with only services, with only components, with only

agents or with a mix of agents and components (in

the last three models, agents and components

implement services). This process can be interpreted

with different entry points:

 A top-down approach: we can project any
application viewed as sets of collaborative
services corresponding to our abstract service
model into another specification conforming to
one of the three other models (component,
agent or CASOM). More details on the
implementation can further be added by
projecting a specification conforming to one of
these three models to a specification
conforming to a concrete implementation model
such as EJB (Michiel et al, 2001) and Fractal
(Bruneton et al, 2003) for components, AGR
(Ferber et al, 2004) and OMNI (Vàzquez-
Salceda et al, 2005) for agent models and
AgentComponent (AC) for a mixed
agent/component approach (Krutisch et al,
2003).

 A bottom-up approach: any application
implemented by any existing component or
agent model or mix of them can be abstracted
and viewed as a service oriented application.
For example: we can start from an application
implemented by the Fractal component model.
This application must be made conforming to
our component model, and then it can be
abstracted as only formed of collaborated
services, conforming to our abstract service
model.

 A middle-out approach: the emphasis here is

put on the interaction aspects between the

components and agents of the system to reach

Figure 2: Architecture of a holiday reservation system

their integration. Services play here the key

role in their interoperability, as services clarify

the specification of what an agent or a

component does. (Krutisch et al, 2003) defines

the notions of agentification and

componentification. The agentification is the

added value by agent properties to existing

components, and the reverse for the

componentification. These two actions enable

the transformation of any application

specification into an agent only one, a

component only one or a mixed one. They will

enable to enhance easily any existing

component or agent application specification.

The agentification (resp. componentification)

transformation rules can be applied directly

between the two component and agent models

or passing through CASOM.

Figure 3: The main models of our process

As none of existing models for agents, components

and services completely fulfills the requirements

from our point of view (we aim to highlight the

interactions and service definitions in an application

specification through either components, agents or

both entities), we need to define our own unified

models for each domain (component, agent, service

and CASOM). The next section provides more

details about the design of the three component,

agent, and service models (we are still working on

the definition of the CASOM model).

4 AGENT, COMPONENT AND

SERVICE MODELS

4.1 Studied models

We provide here a brief overview of the study of

already existing models in each domain, which led

us to define our own models. In order to design these

models, we firstly unified the concepts that already

exist and vary between the essential models under

the domains of component, agent or service. Then

we focused on the existence of the two key concepts

of interaction and service, whether they appear

implicitly, explicitly or are not present at all. Indeed,

as explained previously, we want to make

interoperate agents and components; interaction is

therefore a key point. Moreover, services will play a

key role as being the pivot for specifying what an

agent or a component does. Finally, we defined our

own models containing the main significant

concepts according to our requirements and

consistently to all studied models.

Regarding components, we studied DARWIN

(Magee et al, 1995) and ACME (Garlan et al, 1997)

for the Architecture Description Language (ADL)

models, Enterprise Java Beans (EJB) and Corba

Component Model (CCM) (OMGc) for industrial

component models, and the Fractal model as an

academic model. UML 2.0 (OMGa, 2007) includes

also a general component model for conceptual

purpose. As a brief result for this study, we found

that the concept of service exists implicitly in most

of component models, through the interfaces of a

component. Considering the interaction concept, we

found that components use mainly basic types of

interaction in their binding and delegation for a

vertical or hierarchical composition, typically

remote procedures call or message passing. Even if

the concept of connector exists in some models,

allowing the definition of complex interactions, from

a practical point of view, it is not always considered

or used as a first class entity.

Regarding agents, we studied well known agent

models like AGR (Agent Group Role model) (Ferber

et al, 2004, (Odell et al, 2004)), MOCA (Model

Organizational and Componential for Multi Agents)

(Amiguet, 2003), MOISE/MOISE+ (Model of

Organization for Multi Agent Systems) (Hannoun et

al, 2000), OMNI (Organizational Model for

Normative Institutions). We studied more recent

agent models such as FAML (Beydoun and Low,

2009) and GORMAS (Argente et al, 2009), and

some methodologies for Agent Oriented Software

Engineering, like GAIA (Zambonelli et al, 2003)

and PASSI (Cossentino, 2005). We found that the

concept of service is implicit in most of agent

models under the concepts of role, capability or

behavior. However, it exists explicitly in the cited

methodologies and also in FAML and GORMAS

models. By nature, agent models embed complex

and high-level interaction protocols, such as Auction

protocol (Vetter and Pitsch., 1999).

Concerning services models, the basic

conceptual Service Oriented Architecture (SOA)

model consists of two main actors: service provider

and consumer. The Service oriented architecture

Modeling Language (SoaML) (OMGb, 2009),

provided by the OMG, concentrates on the

collaboration between participants through service

contracts. Another well known model is the Service

Oriented Architecture Reference Model (SOARM(1))

provided by OASIS. It is a general model which

defines the main concepts that should be considered

in the design of any system adopting a SOA

approach. Compared to agent and component

models, for which we directly unify their main

concepts according to our requirements, we have a

specific constraint for the service model. The goal of

this model is to specify an application at an abstract

level, that is, without defining the kind of elements

that are implementing the services. Then, the

concept of participant that exists in some service

models is not relevant from our point of view.

Considering the concepts of interaction between

services, it is achieved either by sending messages or

by business protocols to achieve the aggregation of

services (a choreography) or to make recursive

composition of services to a new service that has

central control over the whole process (an

orchestration(2)).

4.2 Defined models

Figure 4 presents the three models of agent,

component and service we defined as a result of the

study of existing models for each domain. These

models are presented through a single diagram

(following the UML class diagram notation). The

main reason that stands behind this representation is

that it helps in visualizing common concepts

between these three models. This emphasizes the

possibility of integration of agents, components and

services. The second reason is pragmatically to deal

with the paper page limitation. All the concepts

presented on the three models are defined in table 1.

Interaction and service concepts are key points in

our approach for ensuring interoperability among

agents and components. As seen, they exist,

explicitly or implicitly, in all studied approaches:

they are then present in our three models. Services

are associated with interactions of roles played by

elements (agents, components or services) and with

their operations. The concept of protocol specifies

the behavior of an interaction. As all these concepts

are the same (or very similar) in the three domains,

they are shared by the three models.

 Others concepts are in the same way shared by

two domains, among components and services, such

as the basic interaction type and the service point

(provided and required) concepts. However, if we

exclude the common concepts between the three

domains, the agent model does not share concepts

with neither the service model nor the component

one.

The last category of concepts concerns the

specific concepts to each model. For instance, agent,

goal, group, task or organization concepts are

dedicated to the agent model and component,

connector, connector component concepts to the

component model. Some of these concepts are also

specialization of general and shared concepts. For

instance, the agent model defines the concepts of

negotiation, coordination and communication that

specialize the interaction concept and an agent

capability is a specialization of the service concept.

In the same way, for the component model, a

connector is a specialization of interaction. Finally,

some concepts are mainly the same but are not

reified in the same way: services for the service

model and components for the component model can

be either primitive or composite.
As a conclusion on these models, we see that

most of the service model concepts are shared by the
agent and the component models. This is consistent
with the fact that services are a pivot for
interoperability among agents and components and
that, in our specification process, the service model
specifies in a more abstract way applications built
with agents and/or components. We also retrieve the
characteristics of agents and components described
in the introduction: agents offer more high level and
variety of interactions and components are more
structurally defined, allowing a better reusability
(through composition and service point features).
Finally, component and service models are close;
they mainly define the same concepts. The main
difference is in the translation of the composition
feature from abstract entities (the services) to
concrete one (the components). In the same way, the
reification of the interaction is made within an
additional concrete element in the component
model: the connector. The component model is
somehow a concrete specialization of the service
model. On the contrary, the agent model owns more
specific features and is relatively different from the
component and service models.

(1) http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
(2) http://www.soa-in-practice.com/soa-glossary.htm

http://www.soa-in-practice.com/soa-glossary.html#services

Figure 4. Models of service, component and agent with their shared concepts

Concept Model Definition
Service Service A logical representation of a repeatable business activity that has a specified outcome. It can be

composite or primitive.

Component Definition of a static unit of functions (a classical component interface).

Agent Specification of agent’s behavior and capabilities (provided or required ones).

ServicePoint Service Access point to the service, where it determines the way to use it (as provided or required).

Component A port of a component either exposing some of its services (provided specialization) or specifying

services it has to use (required specialization).

Operation Service

Component

Agent

An operation associated with a service, including the required pre and post conditions for its application.

Parameter Service

Component

Agent

Inputs parameters for an operation or output ones for exposing its results.

Role Service The responsibilities a service takes through its service points within an interaction with other services.

Component The responsibilities a component takes through its service points within an interaction with other

components.

Agent The role that an agent plays within a group or an organization. It represents also the responsibilities and

the tasks that an agent assumes within an interaction with other agents. It can be of two types:

Functional or interactional.

Interaction Service A kind of action or influence in the dynamic relation between services in order to respond to their needs,

which enable them to achieve their expected results.

Component Communication between components through their service points to exchange their services. It can be

from different types: basic or more complex through a connector.

Agent The dynamic relation between agents through their played roles. It has different types: communication,

coordination, negotiation.

Protocol Service An orchestration or choreography process flow specification between services.

Component A complex interaction specification between components.

Agent Specification of the types of interactions between agents from basic types like Message Transferring

Protocol to the negotiation and coordination ones.

Basic Service,

Component

A low-level communication, such as RPC/RMI (Remote Procedure Calls, Remote Method Invocation),

message passing or delegation between services/components for a service/component composition.

Component Component A reusable entity with well specified access points (service points) to expose or use services. It can

concretely be primitive (simplest type of component) or composite. The primitive component is the

basic entity in an assembly of components (horizontal composition) or their hierarchical composition

(vertical composition). A composite component is built by the composition of primitive or composite

components, without nesting limit.

Connector Component The explicit representation of a complex interaction. A connector can be itself a component through the

connector component entity. Its behavior is specified by a protocol.

Connector

Component
Component An interaction at the same level of a component (Cariou et al, 2002). It can be primitive or composite.

Agent Agent An autonomous rational entity.

Group Agent A structural entity composed of roles and agents. An agent can be member of one group if and only if he

plays a role associated with this group.

Organization Agent The overall architecture of the system that is the position of each role in the organization and its

relationship with other roles. It defines also the authority between set of agents in a group or between

groups.

Capability Agent The knowledge or capacities that an agent owns to play his role in a group or to participate within an

interaction. Some capabilities are created with the agent and others are acquired through the agent life.

An agent may need to use other agent capabilities if he does not own them. Perception, communication,

reasoning and taking decisions are from the essential capabilities of agents.

Goal Agent Functional requirements of the organization. It could be divided in sub goals related to agents or to

groups. Agents may have their individual goals which lead to possible conflicts with the collaborated

ones.

Table 1. Definition of the concepts of service, component and agent models

4.3 Integration of agent, component
and service models

There are two main future steps concerning the
specification process. The first one is to define the
CASOM model, allowing the specification of an
application with agent and component features
simultaneously. With this model, a component will
make use of the advanced types of interaction of
agents. On the other side, an agent will become
customizable and reusable by using the service point
and composition concepts.
By using the CASOM model, we will be able to
specify the mixed agent/component application
example of the section 2.
The second step consists in defining the semantics

mappings and transformations among all these four

models. We have seen above that there are strong

links between the component and the service

models; transformations between these models will

then be almost easy to define. However, concerning

the agent model, there are more important

differences with the component or the service

model. Then, mappings will be more complex. As an

illustration, here are some ideas of what they can be:

the concept of agent can be mapped to a primitive

component. Then, the concept of group can be

mapped to a composite component. The concept of

capability of an agent can be mapped to a service

point concept in the component model and so on.

5 RELATED WORK

In this section, we present existing works that are

interested in mixing agent, component and service

approaches, or at least two of them.

Some works deal with the integration of

component and agent approaches depending on

delegation between these entities. (Krutisch et al,

2003) uses the componentification approach for

defining new entities named AgentComponent (AC)

which are originally agents but encapsulated into

components. We can find in (Aniorté and Lacouture,

2008) another interesting work where components

are automatically adapted by attaching them to

agents. This work can be listed under the

agentification notion where components gain the

dynamicity feature from agents.

Other works use both of component and service

as key concepts. A detailed comparison between the

service and component oriented software

engineering is provided in (Breivold and Larsson,

2007). Service technologies (such as Web services)

are considered as a special type of components. The

reverse is also true in other works like in (Herault et

al, 2004), where the component is used to specify

subtasks of a service. A new entity named

ServiceComponent is proposed in (Zhang et al,

2008). This entity represents business requirements

and is at the same time a functional unit based on

traditional ADL components.

Agents and services are also key concepts for

many researches, such as (Preist et al, 2001) which

assume that the agent technology is the best way to

reach service composition by negotiation. An agent

behaves also as a service aggregator (or market

maker) in (Papazoglou et al, 2005).

 (Hahn et al, 2010) provides a model driven

approach for the integration of agent and services. It

shows the possibility of the transformation between

SoaML and a defined platform independent (meta-)

model of agents (PIM4AGENT). This work has

been previously started in (Hahn et al, 2006) where

the authors studied the Believe Desire Intention

(BDI) models of agents (Rao and Georgeff, 1995). It

is extended in (Hahn et al, 2010) to integrate the

organizational dimension. Excepting the absence of

components, this work is quite similar to our

approach with a main point of difference: SoaML is

chosen to represent the SOA model where it

contains the notion of agent for concretely

representing a participant in an application

specification. While in our approach, the service

Interactional Role Agent A classical role used in the definition of interaction protocols. This role enables an

agent to expose or to request the needed services.

Functional Role Agent The definition of the tasks that must be carried out in the system. It may also

present the agent behaviour.

Task Agent A unit of action that the agent performs and that does not require interaction with

any other agent.

Communication Agent Communication through an agent language like ACL.

Coordination Agent Coordination among agents that share some resources, to avoid conflicts, such as

coordination by planning, coordination through the organizational structure or by

signing contracts (FIPA, 2002)

Negotiation Agent Negotiation when a compromise has to be reached between some agents to solve

occurred conflicts, such as auction and Fish market protocols (Fishmarket, 1999).

model is more abstract and does not integrate this

concept of participant.

As a conclusion, as far as we know, there is no

work similar to ours where agents, components and

services are consistently integrated together.

6 CONCLUSION

In this paper, we present an approach for integrating

component and agent approaches using interoperable

services as the pivot of this integration. Our goal is

to overcome the respective shortages of each domain

by adding features coming from the other one. To

achieve this goal, we propose a specification

process. It is composed of four models allowing the

specification of an application with agents,

components, mix of agents and components, or only

as abstract services. Three of them have been

presented in this paper: the component, agent and

service ones. They focus on the interaction concept,

in addition to the service one, for ensuring

interoperability between agents and components.

The main contribution of our work is in studying the

three domains of component, agent and service

simultaneously, while many other approaches just

study pair of them as seen in the related work

section.

Our next steps are: a) the design of the CASOM

model enabling using both concepts of agent and

component through interoperable services in the

same application specification and b) the definition

of the semantic mappings among the four models.

Specifying notably the two essential actions of

agentification and componentification is from our

main perspectives. We wish to apply the

agentification process on any existing component

application to reach an application specified with

only agents or with agents and components together

and conversely.

The specification process is currently being

implemented as a Model-Driven Engineering

platform using the EMF framework (Eclipse). Each

model is a Domain Specific Language (DSL) and all

mappings, projections and actions among models

(including agentification and componentification)

will be realized through automatic model

transformations.

REFERENCES

Amiguet, M., 2003. MOCA: Un modèle componentiel
dynamique pour les systèmes multi-agents

organisationnels phd thesis. Université Neuchatel
Institut d’Informatique et d’Intelligence Artificielle,
Suisse.

Aniorté, P. and Lacouture, J., 2008. CompAA: A Self-
Adaptable Component Model for Open Systems. In
ECBS ’08: Proceedings of the 15th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems,
Washington, DC, USA, pp.19–25. IEEE Computer
Society.

Argente, E., Botti, V. and Julian,V., 2009. GORMAS: An
Organizational-Oriented Methodological Guideline
for Open MAS, 10th Int. Workshop on Agent-
Oriented Software Engineering (AOSE) pp. 85-96.

Bergenti, F., Huhns, M., 2004. On the use of agents as
components of software systems. In Methodologies
and Software Engineering for Agent Systems The
Agent-Oriented Software Engineering handbook,
New York. Kluwer Academic Publishing, pp 19-32.

Beydoun, G., Low, G., Henderson-Sellers, B.,
Mouratidis, H., Gomez-Sanz, J., Pavon, J. and
Gonzalez-Perez, C. 2009. FAML: A Generic
Metamodel for MAS Development. In IEEE
Transactions on Software Engineering, vol 35, pp
841-863.

Breivold, H. P. et Larsson, M., 2007. Component-Based
and Service-Oriented Software Engineering: Key
Concepts and Principles. In euromicro’07:
Proceedings of the 33rd euromicro Conference on
Software Engineering and Advanced Applications,
Washington, DC, USA, pp. 13–20. IEEE Computer
Society.

Bruneton, E ., Coupaye, T. et J. Stefani, 2003. The Fractal
Component Model, Object Web Consortium,
Technical Report Specification V2.

Cariou E, Beugnard, A. and Jezequel J.-M, 2002. An
Architecture and a Process for Implementing
Distributed Collaborations. In The 6th IEEE
International Enterprise Distributed Object
Computing Conference (EDOC 2002). IEEE
Computer Society.

Cossentino, M , 2005. From Requirements to Code with
the PASSI Methodology, in Agent-Oriented
Methodologies, B. Henderson-Sellers and P.
Giorgini, IdeaGroup Inc, Hersey, PA, USA.

Eclipse, http://www.eclipse.org/emf/.
Ferber J., Gutknecht O., Michel F., 2004. From Agents to

Organizations: an Organizational View of
MultiAgent Systems, in Agent-Oriented Software
Engineering (AOSE) IV, P. Giorgini, Jörg Müller,
James Odell, eds, Melbourne, LNCS 2935, pp. 214-
230.

FIPA-ACL, 2002. Message structure specification.
http://www.fipa.org/specs/fipa00061/

FIPA, 2002. Contract net interaction protocol
specificationFIPA specifications SC00029H,
Foundation for Intelligent Physical Agents.
http://www.fipa.org/specs/fipa00029/SC00029H.htm.

Fishmarket Project, 1999.
 http://www.iiia.csic.es/Projects/_shmarket/,
04/01/1999.

Garlan, D., Monroe, R. and Wile, D., 1997. Acme : an
architecture description interchange language. In
CASCON ’97: Proceedings of the conference of the
Centre for Advanced Studies on Collaborative
research. IBM Press.

Hahn, C., Jacobi,S. and Raber, D. 2010. Enhancing the
interoperability between multiagent systems and

service-oriented architectures through a model-driven
approach. In Proceedings of the 8th German
conference on Multiagent system technologies
(MATES'10), J 252;rgen Dix and Cees Witteveen
(Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 88-
99.

Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesaeter, B.,
Berre, A.-J. et Zinnikus, I.,2006. Meta-models,
models, and model transformations : Towards
interoperable agents. In MATES, pp. 123–134.

Hannoun, M., Boissier, O., Sichman, J. S. et Sayettat, C.
, 2000. MOISE : An organizational model for multi-
agent systems. In Proceedings of the International
Joint Conference,th Ibero-American Conference on
AI 7, 15th Brazilian Symposium on AI, pp. 152–161.
Springer.

Herault, C., Lecomte, S. and Delot,T., 2004. New
Technical Services Using the Component Model for
Applications in Heterogeneous Environment. In
LNCS 3473,Workshop of Innovative Internet
Community Systems.

Krutisch, R. Meier, P. and Wirsing, M., 2003. The Agent
Component Approach, Combining Agents, and
Components. In MATES, volume 2831, pp. 1-12.

Lind. J., 2001. Relating Agent Technology and
Component Models.
http://www.agentlab.de/documents/Lind2001e.pdf.

Magee, J., Dulay, N., Eisenbach, S. and Kramer, J.,
1995. Specifying Distributed Software Architectures.
In Proceedings of the 5th European Software
Engineering Conference, London,UK, pp. 137–153.
Springer-Verlag.

Michiel, L., Yalcinalp, L. et Krishnan, S., 2001. Enterprise
Java Beans Specification Version 2.0.

Odell, J., Nodine, M., Levy, R. , 2004. A Metamodel for
Agents, Roles, and Groups, AOSE, LNCS 3382, pp.
78–92.

OMGa, 2007. UML 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-08-
02,2007.

OMGb , 2009 .
http://www.omg.org/spec/SoaML/1.0/Beta2/PDF/09-
12-09.pdf.

OMGc, CORBA Component Model Specification Version

4.0.
Papazoglou, M., Aiello, M., Giorgini, P., 2005. Service-

Oriented Computing and Software Agents. In L.
Cavedon, Z. Maamar, D. Martin, B. Benatallah
editor(s). Kluwer.

Preist, C., Byde, A., Bartolini, C. and Piccinelli, G.,
2001. Towards agent-based service composition
through negotiation in multiple auctions. AISB
Journal 1(1).

Rao, A. S., Georgeff, M., 1995. BDI Agents : from
theory to practice. In First International Conference
on Multi-Agent Systems (ICMAS-95), S. Francisco,
CA, pp. 312–319. MIT Press.

Schiaffino, S., Amandi, A., 2004. User - interface agent
interaction: personalization issues, int. j. hum.-
comput. stud. 60(1), pp.129_148.

Singh, M.P. and Huhns, M.N., 2005. Service-Oriented
Computing: Semantics, Processes, Agents, John
Wiley & Sons.

Vàzquez-Salceda, J., Dignum, V. et Dignum, F., 2005.
Organizing Multiagent Systems. Autonomous Agents
and Multi-Agent Systems 11, pp. 307–360.

Vetter, M., and Pitsch, S., 1999. An Agent-based Market
Supporting Multiple Auction Protocols. In Workshop
on Agents for Electronic Commerce and Managing
the Internet-Enabled Supply Chain, Third
International Conference on autonomous agents
(Agents '99) in Seattle, Washington (USA).

Wooldridge, M., 2009. An Introduction to MultiAgent
Systems (2nd édition). John Wiley & Sons Ltd.

Zambonelli F. Jennings N. and Wooldridge M., 2003.
Developing Multiagent Systems: the Gaia
Methodology. ACM Transactions on Software
Engineering and Methodology 12(3), pp. 417-470.

Zhang, T., Ying, S., Cao, S. and Zhang, J., 2008. A
modelling approach to service-oriented architecture.
Enterp. Inf. Syst., 2(3):pp. 239-257.

http://www.agentlab.de/documents/Lind2001e.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02,2007
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02,2007
http://www.omg.org/spec/SoaML/1.0/Beta2/PDF/09-12-09.pdf
http://www.omg.org/spec/SoaML/1.0/Beta2/PDF/09-12-09.pdf

