
Inductive UML

Franck Barbier and Eric Cariou

University of Pau, BP 1155, Avenue de l’université,

64013 Pau CEDEX, France
{franck.barbier, eric.cariou}@univ-pau.fr

Abstract. The increasing importance of metamodeling calls for metamodels
that are free of ambiguities, contradictions and redundancies. This is
specifically the case for the core of UML (Infrastructure). This paper proposes
to rewrite a part of this core, the Class and Property metaclasses especially. To
avoid infinite regression, the notion of meta-circularity is used. This rewriting is
done by means of inductive types in constructive logic. The proposed
specification is proven correct using the Coq automated prover. Proven lemmas
and theorems about a “metaness” relationship are proposed.

Keywords: Unified Modeling Language, Metamodeling, Constructive logic.

1 Introduction

The Unified Modeling Language (UML) [1] is historically based on metamodeling [2-
4]. Because models are “instances of” or “conform to” metamodels, they are tinged
with errors when metamodels they come from have anomalies. This phenomenon is
even more important when metamodels are implemented in operational environments
like the Eclipse Modeling Framework (EMF) [5]. Model transformations occur at
design time or there is a possibility of having executable models at runtime. In the
latter case, persistent metamodels act as a reflection mechanism (metadata) and Java
may act as an action language to manage models at runtime.

UML has chosen a four-layer metamodel hierarchy with an upper level named M3.
This level is a set of booting notions called “Infrastructure” [6] that reuses elements
from the InfrastructureLibrary and the Meta Object Facility (MOF) [7]. UML
promotes the “anything must be an instance of something” adage. In this scope, the
key Class and Property metaclasses at M3 (Fig. 1) must then be instances of
something at M4. However, introducing a M4 layer leads to the introduction of a M5
layer that leads to… Avoiding such an infinite regression requires an appropriate
specification named meta-circularity [8]; the Class and Property metaclasses must
then be formally specified such that:
− They are instances of something without the need of extra metamodeling layers.

This in particular supposes a clear (explicit) characterization of Instantiation;
− They are generative. All of the other highly useful core metaclasses like Object,

Type, Association, Generalization… even some missing like the Composition

metaclass (black diamond in the UML notation)1, may be defined through
appropriate instantiation protocols. This approach called “inductive UML” is such
that UML can be recursively defined.

Fig. 1. The “very core” of UML with Class and Property as booting notions.

Numerous research works [8-12] (see also Related works section) are attempts to
better clarify the semantics of metamodels in the UML universe: MOF, Infrastructure,
Superstructure and any possible extension. Out of these, metamodel re-formalizations
often rely on “theories” (e.g., non-classical logics) beyond the set theory.

In this paper, metaclasses are rewritten in the form of inductive types coming from
the constructive logic supported by the Coq automated prover [13] as follows:
Inductive X : Type := (* Type is a predefined Coq sort
among Type, Set and Prop *)
| God (* First constructor *)
| cons : X -> X. (* Second constructor *)
God and cons are the names of the two chosen constructors for the X type along

with their signatures. Common functions may be defined as follows:
Definition father(x : X) : X := match x with
| cons source => source (* father x is equal to source
when x has been constructed by means of the 2nd
constructor, i.e., cons source *)
| _ => God (* Result is God for the remaining
constructor(s); underscore sign means “any” in Coq *)
end.
Proofs are based on “tactics” to converge towards a given goal from initial and

intermediately computed hypotheses.
So, in this paper, we specify and prove the correctness of a metamodeling

framework based on Coq. For that, Kühne’s metamodeling framework [2-3] is the
main stream of inspiration. In his categorization, Kühne proposes in [3, pp. 377-378]
a general-purpose mathematical relationship called “metaness” having the following
characteristics: acyclicity, antitransitivity and level-respecting.

To make explicit a proven metamodeling framework, we structure this paper as
follows: Section 2 is a reminder about the current UML design principles and
organization. We specify Class and Property in Coq and how to use them by
introducing metanavigations and by showing how to instantiate any other metaclass.
Accordingly, the Instantiation relationship is formalized. Section 3 is the specification

1 This kind of relationship is intensively used at the M3 level without any formal semantics (see

for instance Fig. 1).

of Kühne’s metaness along with short proofs. Section 4 is about related work while
Section 5 draws some conclusions and evokes some perspectives.

2 UML core organization as dependent inductive types

The model in Fig. 1 means:
− A Class instance is composed (black diamond) of either zero or many Property

instances (ownedAttribute role). A given Property instance belongs (or not) to at
most one Class instance (class role); unsharing applies, i.e., a given Property
object cannot belong to distinct Class objects;

− A Class instance is linked to either zero or many Class instances having the
superClass role2. The reverse navigation means that a given Class has (or not)
direct descendant classes; this metarelationship embodies Generalization links at
the immediately lower metamodeling level;

− Class inherits from Type;
− Classes are either abstract (in italics) or they are not. For instance, the Type

metaclass is abstract. Moreover, the Class metaclass has a Boolean attribute named
isAbstract. This means that any instance of Class owns this attribute with a value
among true or false. So, Type is an instance of Class3 with value true for this
attribute. In terms of instantiation, one thus cannot construct a new metaclass4 as
direct instance of Type.
For conciseness, other key metaclasses (e.g., NamedElement), metaattributes (e.g.,

the name attribute inherited by Class from NamedElement) are ignored. Moreover,
“hidden” features of the model in Fig. 1 are:
− Class is an instance of itself. In the four-layer metamodel hierarchy of UML (M3

to M0), a Class element at the M2 level is an instance of a Class element at the M3
level. There are no reasons to distinguish between M2::Class and M3::Class.
Conceptually, they are the same (same set of features especially). Accordingly, we
consider the existence of an Instantiation link from Class to itself.

− The Type and Property elements are instances of Class;
− isAbstract in Class at M3 is an instance of Property at the immediately upper level

with isComposite = true. So, isAbstract is semantically equivalent to a composition
relationship from Class to Boolean with the 1..1 cardinality and the isAbstract role
both being next to Boolean.

− isComposite in Property is an instance of Property with isComposite = true;
− The Composition link from Class to Property is an instance of Property with

isComposite = true (for brevity, some original attributes of Property are omitted);
− The Association link from Class to Class (superClass role) is an instance of

Property with isComposite = false;

2 This association materializes direct inheritance, i.e., it does not represent all of the super
classes of a class (transitive closure).

3 This Instantiation link does not appear in Fig. 1. In common practice, links that cross
metamodeling layers are omitted.

4 While Type belongs to the M3 level, such a hypothetical metaclass would belong to the M2
level.

− Finally, the Generalization link (i.e., inheritance) from Class to Type is an instance
of the Association link from Class to Class.

2.1 Inductive definition of Class and Property

In this section, Class and Property are introduced as Coq types while BBoolean,
CClass, PProperty and TType are UML concepts (i.e., Coq constants). It is also
shown that Class, Property and NonAbstractClass5 are mutually dependent types.
Inductive Class : Type :=
 BBoolean | (* UML Boolean type *)
 CClass |
 PProperty |
 instantiate : NonAbstractClass -> Property ->
Property -> Class |
 inheritsFrom : Property -> Property -> Property ->
Class
with Property : Type :=
 Null | (* Null is introduced in [7, p. 11] *)
 set_isAbstract : Property |
 set_isComposite : Property |
 set_ownedAttribute : string -> Class -> nat -> nat
-> Property -> Property | (* Expected order: attribute
name, attribute type, lower bound, upper bound,
isComposite or not *)
 set_superClass : Class -> Property (* Inheritance
*)
with NonAbstractClass : Type :=
 instantiate' : Class -> NonAbstractClass.

2.2 Metanavigations

The definition of metanavigations is straightforward. For example, ownedAttribute in
Fig. 1 is specified as an ordered list of Property objects:
Definition ownedAttribute(c : Class) : list Property :=
match c with
 | CClass => cons (set_ownedAttribute isAbstract_label
BBoolean 1 1 set_isComposite) nil
 | PProperty => cons (set_ownedAttribute
isComposite_label BBoolean 1 1 set_isComposite) nil
 … (* other constructors here*)
 | _ => nil (* remaining cases *)

5 This type is introduced for preventing abstract classes are to be instantiated.

end.
So, by construction, computing the expression ownedAttribute CClass leads to a

one-element list: its isAbstract attribute (see Fig. 1).

2.3 Constructing new metaclasses

The generative nature of the above specification allows the creation of other core
concepts through different protocols. For example, instantiating a Coq Class object
(that is equivalent to a UML CClass object):
Definition Object : Class := instantiate (instantiate'
CClass) Null Null. (* [7, p. 15] *)
Here, the first Null occurrence means that Object coming from the UML kernel is

not abstract while the second means that it has no “owned attribute” (note that
simplified instantiate methods may be easily provided to avoid using Null).

2.4 A formal version of the UML «instanceOf» relationship

To solve the problem of assigning a mother class to CClass (meta-circularity), we
specify the recursive class function over the Class inductive type:
Fixpoint class(c : Class) : Class := match c with
| instantiate (instantiate’ c’) _ _ => c’
| inheritsFrom (set_superClass super) _ _ => class
super
| _ => CClass (* BBoolean => CClass | CClass => CClass
| PProperty => CClass *)
end.
Consequently, the UML «instanceOf» relationship can be easily derived from the

class above function as follows:
Inductive instanceOf(c’ : Class) : Class -> Prop := (*
e.g., instanceOf CClass Object *)
def : forall c, c’ = class c -> instanceOf c’ c.
In Coq, predicates using recursive constructions (def constructor above) may also

be inductively defined.

3 Proven metamodel infrastructure for UML

3.1 Metaness

Kühne lays down the principle of composition of the class function for expressing
metaness. Metaness is viewed “as a two-level detachment of the original”.

In Coq, we pose the possibility of recursively computing the metaiclass of any
UML element e for any natural number i with meta0class e = e and meta1class e =
class e. The i index materializes levels in metamodeling.
Fixpoint metaness(n : nat) (c : Class) : Class := match
n with
| 0 => c
| S m => class (metaness m c) (* S m is the successor
of m for natural numbers in Coq *)
end.
So, metaness 0 c is the c entity itself while metaness 1 c is the direct class c.

metaness 2 c is the class of the class of c, namely the metaclass of c, etc. An
interesting lemma to be proven is, when n is not equal to 0, c = metaness n c is only
possible when c = CClass:
Lemma Metaness_majorant : forall c : Class, forall n :
nat, n <> 0 -> c = metaness n c -> c = CClass.

3.2 Metaness acyclicity, antitransivity and level-respecting

Fig. 2. Metaness acyclicity (left hand side) and antitransitivity (right hand side).

The proof of metaness acyclicity is based on the following Coq theorem:
Theorem Metaness_acyclicity : forall c c’ : Class,
forall n : nat, c <> CClass -> c’ = metaness n c -> c
<> class c’.
This rule is illustrated through Fig. 2. A proof by contradiction is necessary to

justify this theorem (for conciseness, we hide Coq tactics). We imagine the absurd
consequence that c = class c’. If so, from the initial assumption c’ = metaness n c (c
<> CClass), we are able to write:
class c’ = class (metaness n c)
c = metaness (S n) c (* absurd hypothesis is used *)
From the inductive specification of the nat type in Coq, we know that S n <> 0.

From the Metaness_majorant lemma, we conclude that c = CClass. This result is in
contradiction with our initial hypothesis part: c <> CClass. So, c = class c’ is absurd.

The final conclusion is therefore: c <> class c’. In other words, this paper’s
specification of metaness is acyclic as advocated by Kühne in [3].

The proof of metaness antitransitivity (Fig. 2) is based on the following Coq
theorem:
Theorem Metaness_anti_transitivity : forall c c’ :
Class, forall n : nat, c <> CClass /\ n >= 2 -> c’ =
metaness n c -> c’ = class c -> c’ = CClass.
The proof of level-respecting is based on the following Coq theorem:
Theorem Level_respecting : forall n m : nat, (exists c
: Class, exists c’ : Class, c <> CClass /\ c’ =
metaness n c /\ c’ = metaness m c) -> n = m.

4 Related work

There are two general-purpose categories of research works that stress the weakness
of UML. In [9] for instance, the authors use conceptual graphs to re-formalize the
Class (renamed Node in the proposed formalization), Association (renamed Link) and
Specialize6 (renamed super) metaelements. An interesting point in this contribution is
the introduction in the foreground of the Instantiation relationship through a meta
predicate. The paper offers conceptual graphs as a set of first order predicates
including the specification of meta-circularity as follows:
[NODE:NODE]->(meta)->[NODE:NODE] (* [t:i] means i of
type t *)
This pioneering work also introduces the sem predicate (instanceOf inductive

predicate above) as the counterpart of the meta predicate. However, no proofs are
offered to show that these two constructions are mutually consistent, even though it is
written: “The sem relation is derived from the meta relation.” The Instantiation
relationship is recursively defined without termination capabilities:
[LINK:meta]->(meta)->[NODE:LINK]
One observes that this specification is not generative in the sense that there is no

bootstrapping: meta is an instance of Association which is an instance of Node.
Another paper inspired by a graph theory is [10]. Authors propose the introduction

of a formal semantics that in particular crosses over all diagram types. More
ambitious works [8] [11-12] consider the pure invention of a metamodeling
framework (even theory) and/or a dedicated language (e.g., MML in [8]). For
example, Paige et al. in [12] benefit from using another automated prover (PVS).
They demonstrate how models may be accordingly checked in an Eiffel-like fashion:
invariants, pre-conditions and post-conditions are kept in PVS to limit Eiffel as a
formal language only.

6 This metaclass has been removed from the last versions of MOF and UML.

5 Conclusions and perspectives

From version 1.1 in 1997, the overall UML metamodel has undergone many changes.
However, the current formalization (metamodels expressed in the Entity/Relationship
paradigm along with OCL constraints, i.e., well-formed rules) has not gone beyond
the set theory. Based on this style, precise metamodeling does not preclude from
having rules that contradict each other, that create overlapping or that are silent on hot
topics. The latter issue may be illustrated by the absence of a formal semantics of the
Composition relationship in UML.

This paper’s research seeks to be faithful to the original UML spirit. As much as
possible, we intend to avoid any restructuring of the existing dependencies between
metaconcepts. However, as shown in Section 4, new constructs seem useful to move
from precise metamodeling to formal metamodeling. In this scope, constructive logic
and Coq are powerful helpers.

References

1. OMG Unified Modeling Language™, Superstructure, Version 2.3 (May 2010)
2. Atkinson, C. and Kühne T.: Model-Driven Development: A Metamodeling Foundation.

IEEE Software 20(5), pp. 5-22 (2002)
3. Kühne, T.: Matters of (Meta-) modeling. Software and Systems Modeling 5(4), pp. 369-385

(2006)
4. France, R. and Rumpe, B.: Model-driven Development of Complex Software: A Research

Roadmap. In: The ICSE 2007 Future of Software Engineering workshop (Minneapolis, USA)
(2007)

5. Steinberg, D., Budinsky, F., Paternostro M. and Merks, E. EMF - Eclipse Modeling
Framework, Second Edition. Addison-Wesley (2008)

6. OMG Unified Modeling Language™, Infrastructure, Version 2.3 (May 2010)
7. Meta Object Facility (MOF) Core Specification, Version 2.0 (January 2006)
8. Clark, T., Evans A. and Kent, S.: The Meta-Modeling Language Calculus: Foundation

Semantics for UML. In: The 4th International Conference on Fundamental Approaches to
Software Engineering, pp. 17-31 (Genova, Italy) (2001)

9. Bézivin J. and Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In:
Automated Software Engineering, pp. 273-280 (San Diego, USA) (2001)

10. Kuske, S., Gogolla, M., Kreowski, H.-J. and Ziemann, P.: Towards an integrated graph-
based semantics for UML. Software and Systems Modeling 8(3), pp. 403-422 (2009)

11. Jackson, E. and Sztipanovits, J.: Formalizing the structural semantics of domain-specific
modeling languages. Software and Systems Modeling 8(4), pp. 451-478 (2009)

12. Paige, R., Brooke, P. and Ostroff, J.: Metamodel-based model conformance and multiview
consistency checking. ACM Transactions on Software Engineering and Methodology 16(3)
(2007)

13. Bertot Y. and Castéran, P.: Interactive Theorem Proving and Program Development −
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

