[]] »
H N
-.=.U |L¥5'}§!I5 a/i LIUPPA
BB PAYS DE ’ADOUR
|

A generic solution for weaving business code
into executable models

Eric Cariou, Olivier Le Goaer, Léa Brunschwig, Franck Barbier

University of Pau / LIUPPA, France

f = \/ECSEL Joint Undertaking
s M E g a M @ R t £ Horizon 2020

Europe:an. | European Union funding
Commission i

Introduction
* Interests of model execution

* Clear separation between behavioral and business parts

®* Business

* What to do: call of a Web service, request on a data-base...

* Behavior
°* When and why doing something

* Specified by a state machine, a Petri net, a workflow...

* Software implementation
* Weaving business operations with a behavorial model

-> Technical/scientific problem

" l ('l EXE 18 at MODELS,
" October 2018, Copenhagen
||

Challenges

* Developping an executable DSL and its execution engine
* Well-known: Ecore, Java EMF, Kermeta, GEMOC ...

°* How to weave business operations with the executable
model and its elements?

* Java methods with various number and type of parameters with
returned values becoming parameters of other methods

* Need to manage a data flow

* The execution engine is agnostic: independent of the content of
the model to execute

P exec: exec: buy plane. _ exec: take
\registration EXE18) tlcket(): ticket) § plane(ticket)

l ('l EXE 18 at MODELS,
October 2018, Copenhagen

Challenges

* One solution
* Developping the business parts in parallel of the model

* Final application obtained by full code generation mixing
executable elements and business methods

° Limits
* Require to develop business code in an Eclipse/EMF-based tool
* |f you want or need to use another IDE or reuse legacy code?
* How to developp an Android mobile app without Android Studio?
* We must be able to escape the Eclipse/EMF world
* Proposition

* Xmodeling Studio: a tool for defining executable DSL and
execution engines usable in any Java development

l ('l EXE 18 at MODELS,
October 2018, Copenhagen

Xmodeling Studio
* EMF plugin for helping in the definition of executable DSL

* For the language engineer

* Provide generic meta-classes for defining business operations that
can be associated with meta-elements of any Ecore meta-model

* Provide generic EMF Java code for automatically calling the
business operations within the execution engine

* By using the Java reflection mechanisms
* For the software engineer
* Implement his/her Java business methods on one side
* Specify his/her executable model on another side

°* Embed the execution engine and its executable model in any Java
development, independently of Eclipse/EMF

l ('l EXE 18 at MODELS,
October 2018, Copenhagen

Example: Process Definition Language (PDL)

H Process

? executeProcessi)

—————»

) [1..1] start
H Pseudostate .
¢ 4
[1..1] reference
I o b
H End H start
L
[1..1] end
B Activity | [1..*] activities

= label : EString N 10..1] currentActivity
I name : E5tring < i
& methodMame : EString [0-1] previous
? notinMext{act Activity) : EBoolean

Tm..l]néxt

|
.lJ l EXE 18 at MODELS,
October 2018, Copenhagen

H Xmod_Operation

O name : EString

I objectTag : E5tring

= parametersTag : EString
o returnTag : EString

| & execute]

T
[0..1] onEntry [0.1]1 ohDo 1
0f.1] onExgit

H Xmod_Action

& onEntrny
& onExit()
& onDoi)

-

Extended PDL

] operation

[1..1] ref

B Activity

I label : E5tring
I name : E5tring
& methodMame : EString

? notinMext{act Activity) : EBoolean

‘: [0..1] next

|
.lJ l EXE 18 at MODELS,
October 2018, Copenhagen

* Meta-model transformation
* Executable elements are annotated
* Activity can now define operations

* An operation has
* A name
* An object name/tag on which the
operation is called
* Parameters through tags of objects

* A returned value with a tag

* In the Java implementation
* A map associates concrete objects
with their names/tags
* We profide generic code to execute
the business operations and manage
the data flow

PDL Execution engine
* Main code of the engine: the executeProcess() operation of Process

public void executeProcess () {
// get the first activity of the process
Activity act = this.getStart (). getReference ();
do {
// update the current activity
this.setCurrentActivity (act);
// execute the operations of the activity if
// defined by calling our implemented methods of
// Xmod_Action that Activity is specializing
act.onEntry ();
act.onDo ();
act.onExit ();
// go to the next activity
act = act.getNext ();
// end the loop if there is no further activity
} while (act != null);

|
.lJ l EXE 18 at MODELS,
October 2018, Copenhagen

An Android-based PDL model

process {
i 1 On which object
label "Get all SMS" yd
call as entry getAllSMS on sms result allSMSContent
The business Java method to call The returned value becomes
t2 4 parameter of another operation
label "Convert Cursor to JSON" ‘/

call as entry cursor2JSON(allSMSContent) on cloud result json
} next of ti

13 §

label "Backup in Cloud"

call as do save(json) on cloud
} next of t2

nm
l ('l EXE 18 at MODELS,
October 2018, Copenhagen

Software engineer: app. implementation

// create the initial contents of the map with business
// objects on which methods will be called
HashMap<String , Object> map = new HashMap< >();

SMSManager smsManager = new SMSManager (...); Implement the
CloudManager cloudManager = new CloudManager (...); | business methods

map. put("sms", smsManager);

map. put("cloud", cloudManager);

// load the contents of the PDL model through our
// generated utilitary class

Process proc;
proc = PDLXmodUtil.loadProcess ("SMSBackupWorkflow.xmi");

// set the map through our generated utilitary class

PDLXmodUtil. setMap (map) ;

// execute the process: the operation of activities will
// be automatically called by our generic meta—classes
// and the data flow is managed by the tags in the map

proc.executeProcess ();

|
.lJ l EXE 18 at MODELS,
October 2018, Copenhagen

Conclusion

* As a proof of concept: an Android mobile app

* Add 3 .jar files of EMF in the Android Studio project (size of 2 MB)

* Add the .jar file of the EMF PDL project

° Add the .xmi model to execute

* Succesfull deployment and execution on an Android smartphone
* Critics

* Strange way and perhaps not efficient way of programming

* Not yet tested for developping large applications

* Intrinsic problem of executable models due to the complete
separation of behavioral and business parts?

* To test it: http://www.pauware.com - Technology

l ('l EXE 18 at MODELS,
October 2018, Copenhagen

http://www.pauware.com/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11

