Specification of Communication Components in UML

Eric CARIOU
Irisa, Campus de Beaulieu

35042 RENNES Cedex — France

Abstract: Reusable software components are being
used more and more in application development.
Our approach introduces a new type of component:
the communication component (or medium). It is
a component that encapsulates any kind of com-
munication service or protocol. Other components,
that could possibly be distributed, are connected to
these mediums and use their communication ser-
vices. This paper explains how to specify a medium
i UML. A medium is defined by a UML collabora-
tion. The constraint language OCL and statecharts
are also used to specify the behavior of the services
offered by a medium. This specification has two
aims: to define the precise behavior of a medium
and to use this in a UML CASE tool to validate
the medium and automatically generate code.

Keywords: communication components, UML,
UML collaborations, OCL, UML statecharts

1 Introduction

Application development is being based more
and more on components. A component is a
software element that describes the services it
offers and those it needs. Thanks to this knowl-
edge, it is easier to interconnect components to
build applications.

Our approach consists in reifying commu-
nication in a special kind of component: the
communication component (or medium) [2]. A
medium is a component that encapsulates any
kind of communication service or protocol. For
instance, a medium can integrate a broadcast
service, a voting service or a consensus proto-
col. A distributed application is built by inter-

"http://java.sun. com/products/ejb
*http://www.omg.org

Antoine BEUGNARD
ENST Bretagne, BP 832
29285 BREST Cedex — France

connecting “classical” components with medi-
ums that manage their communication and dis-
tribution.

From a software architecture point of view,
using mediums enables the functional concern
(what the components do) to be clearly sepa-
rated from the communication concern (man-
aged by the mediums).

From an analysis point of view, mediums
bring a new way of “thinking” about distributed
applications, offering the possibility of consid-
ering the communication as a structuring ele-
ment. It allows means of communication to be
capitalized on, since mediums are components,
and thus, highly reusable.

Previous works [11, 5] have described the in-
teraction between components as important at
least as the functional concern. Most of the
Architecture Description Languages (ADL) [9]
contain the notion of connector. A connector
is a software element that allows components
to communicate with each other in accordance
with a certain processing. The connectors form
the “glueware” coordination between reusable
components, i.e. the specific part of an appli-
cation. None of these works consider that some
parts of inter-component interaction (modeled
by connectors) can be reusable. A medium rep-
resents a reusable communication element that
can be used in the coordination design of sev-
eral applications.

On the component model side, Enterprise
Java Beans! or Corba Component? models per-
mit component distribution. But they do not

integrate the notion of a communication spe-
cialized component. Our approach introduces
this kind of component.

This paper describes how to formally spec-
ify a communication medium. The UML [10]
being the new standard in software engineer-
ing we have chosen it despite some limitations
we have encountered. This specification has
two goals. The first is to define a precise con-
tract on the behavior and the processing of a
medium and the second is to use this speci-
fication in a UML CASE tool to validate the
medium and automatically generate code to
“map” the specification onto component mod-
els (like Enterprise Java Beans, Corba Compo-
nents, COM+...).

The next section explains how to specify a
medium in a general way. Section 3 illustrates
a simple but complete example: a medium in-
tegrating the Linda coordination model.

2 Medium
UML

specification in

2.1 What to describe and why

The aim of the specification is to define the pre-
cise contract [3] of the processing and behavior
of the medium and its services. It details the
signatures of the medium services offered (to
the components) and those required (on the
components), their behavior and the properties
of a medium, either global, or local concerning
a link with a component.

Depending on their needs, components use
some services of the medium, but not all of
them. For instance, in a broadcast medium,
a component wanting to send information uses
only the broadcast service. On the other hand,
a component wanting only to receive informa-
tion uses the receive service. Components are
classed depending on the role they play from
the medium point of view. With each role is
associated a list of services. For instance, the
broadcast medium defines a sender and a re-
ceiver role.

2.2 Methodology of specification in
UML

To describe the contract of the medium, we
need to combine three UML “views”:

e a collaboration diagram for the struc-
tural view of a medium. This collabora-
tion is described at the specification level.
Collaborations at instance level (the way
it is the most commonly used) and se-
quence diagrams cannot be used because
they cannot define a generic system but
only a specific instance of a system.

e OCL constraints [12, 10] for the spec-
ification of medium invariants and the
static behavior of a service (specification
of pre and postconditions on each ser-
vice).

e statecharts for the specification of dy-
namic behavior. This view allows tempo-
ral constraints, synchronization, locked
conditions, etc. to be described.

Each service can be associated with an in-
teraction (a set of messages) added onto
the collaboration diagram, to show the
order and nesting of operation calls to re-
alize this service.

The use of OCL “links” all these views for-
mally. We generalize the use of OCL wherever
possible. In particular, we use OCL for spec-
ifying the guards and conditions of messages
in collaborations and in statechart transitions.
OCL expressions are defined in a precise con-
text. For a message in a collaboration, the con-
text is the sender of the message. For a tran-
sition in a statechart describing a class (or an
operation of this class), the context is this class.

2.3 Detail of the structural view

Mediums are represented by UML collabora-
tions. UML collaborations are used to describe
interactions between elements. Since we can

movieServer e s
************ . VideoBroadcast Medium ~ ---------=--"""0 7

viewerl

client -~

<2 dient viewer2

viewer3

Figure 1: Example of the use of a video stream broadcast medium

<< interface >>

. /<RoleName>
|<RoleName>ComponentService

<MediumName> Core Medium

<<interface >>
I<RoleName>MediumService

Figure 2: Internal generic description of a medium and a role

consider communication as a kind of interac-
tion, then using collaboration to describe a
medium seems to be adapted.

In each collaboration diagram, we retrieve
roles played by components connected to the
medium. The use of a medium is represented
by a class or object diagram in which the col-
laboration of this medium appears. For in-
stance, figure 1 shows an object diagram in
which a medium is used to realize communi-
cation between 4 components. The medium
called VideoBroadcast Medium manages the
broadcast of a video stream. One server, the
movieServer object, (playing the server role
in the collaboration) offers the stream to the
medium that broadcasts it to the three client
components, the viewerX objects (all playing
the client role). The number of clients is vari-
able and depends of the application.

For each “<RoleName>" role, there are two
interfaces:

e I<RoleName>MediumService is the in-
terface of the services offered by the
medium to the component playing the

role “<RoleName>", i.e. the services

used by these components.

e I<RoleName>ComponentService is the in-
terface of the services that the com-
ponent playing the role “<RoleName>"
must implement and that are called by
the medium.

Interfaces and classes involved in a col-
laboration describing a medium “<Medi-
umName>" belong to a package named
P<MediumName>Medium.

The use of interfaces allows the roles to be
typed. A class implementing the PBroad-
castMedium::I1SenderComponentService
face can be connected to the medium called
“Broadcast” and play the Sender role.

inter-

Figure 2 shows the classes involved and
their relationship for a generic role called
<RoleName> and a medium called “<Medi-
umName>". This description is at the collab-
oration description level, figure 1 being at that
of collaboration use (z.e in a class or object di-
agram). The “ 77 on the association between
/<RoleName> role and <MediumName> Core
Medium class is replaced in a “real” description

by the number of components of this role that
can be connected to this medium.

Some other classifiers could be associated
with the <MediumName> Core Medium class
in order to describe the behavior of the medium
and its services.

Global properties are attributes of the class
<MediumName> Core Medium. Local proper-
ties concerning a link component/medium are
placed in an association class on the associa-
tion between the class <MediumName> Core
Medium and the appropriate role.

3 Communication medium ex-
ample

A quite simple but complete example is the de-
scription of a medium implementing the Linda
coordination model.

3.1 Informal description

The Linda coordination model [8] is based on a
shared data space, containing tuples. A tuple is
a sequence of fields that contain either a value
or a variable. The tuples in the tuple space only
contain values. The communication is based on
the pattern-matching between a tuple template
(a mix between values and variables) and tuples
of the space. A template tuple T1 matches a
tuple T2 if they have the same number of fields
and if T'1 contains the same values at the same
places as T2. The others fields of T1 are vari-
ables.

For instance, consider the following tuple

space:
("12","ab","23","897") t
("12","rg","23","567") ta
("12","ab","23","897","33") 13
("13","bc","29", "432") ta

The ("12",x,"23",y) template tuple,
where x and y are variables, matches tuples
t1 and t9, because they have the same number

of fields and the same values at the same places
(12 in first position and 23 in third).

The communication is done by adding and
removing tuples from the space. Communi-
cation services are the same for all the com-
ponents, so they all play a single role, called
Linda (there is no need to distinguish compo-
nents as in the case for the broadcast medium
that classes the components as server or client).
A medium manages a single tuple space. The
services are the following:

e void out(Tuple t): add the tuple t to
the space. This operation is atomic.

e Tuple in(Tuple t): return and remove
from the space a tuple that fits the t tem-
plate. If more than one tuple fits t, the
removed tuple is chosen in an indetermin-
istic way. If there is no available tuple fit-
ting t when the operation is called, that
is blocked until such a tuple is present in
the space.

If we consider the previous example, the
calling of in(("12",x,"23",y)) will re-
turn and remove from the space, either t;
or tg.

e Tuple read(Tuple t): this behavior is
the same as for the in operation but only
returns a tuple without removing it from
the space.

3.2 Collaboration view

Figure 3 describes the collaboration diagram
of the Linda medium. The number of com-
ponents that can connect to the medium
is undefined (the “*” multiplicity between
the /linda role and the Linda Core Medium
class). The ILindaMediumService inter-
face contains the service signatures and the
ILindaComponentService interface is empty
because the medium does not need to call ser-
vices on components connected to it. The
space association represents the tuple space
managed by the medium. A tuple is an in-
stance of the Tuple clagss. The match opera-
tion returns true if the template tuple passed

<< interface >> /linda
ILindaComponentService *

Linda Core Medium

remove(Tuple)

Vs space

<< interface >> %
ILindaM ediumService

Tuple

Tuplein(Tuple)
Tuple read(Tuple)
out(Tuple)

Boolean match(Tuple)

Figure 3: Collaboration diagram of the Linda medium

as a parameter matches the tuple on which this
operation is called and false otherwise.

3.3 OCL view

Calling the out operation adds the tuple passed
as a parameter in the space:

context LindaCoreMedium: :out(t:Tuple)
post: space = space@pre->including(t)

The intuitive way to specify the postcondi-
tion of the in operation is to say “the returned
tuple fits the template and is removed from the
space, which notably implies the space becomes
the space before the operation without the re-
turned tuple”. In OCL, this gives:
space = space@pre -> excluding(result).

Actually, this specification cannot work if
the tuple is not in the space when the oper-
ation is called. This operation can be blocked
for a time long enough to allow some compo-
nents to add several tuples in the space by out
operation calls. So, when the blocked in opera-
tion has finished, space@pre references a space
that has been modified and if the former OCL
expression is validated, that will cancel all the
space modifications made during the operation
execution and so will not ensure the tuple space
coherence.

The solution is to use an atomic tuple re-
moving operation, like the remove operation.
This operation ensures that the tuple passed
as a parameter is in the space when the oper-

ation is called, and that once the operation is
finished, it has been removed from it.

context LindaCorelMedium::
remove(t:Tuple)
pre: space->including(t)

post: space = space@pre->excluding(t)

Now, to specify the in operation, we just
have to say that “the returned tuple fits the
template and it has been removed by a remove
operation call”:

context LindaCoreMedium::
in(t:Tuple) : Tuple
post:
result.match(t) and
self.oclCalllperation(remove, result)

The oclCallOperation is one of our OCL ex-
tensions. Here, it means that the remove oper-
ation has been called with result as a param-
eter on the object self during the execution
of the in operation. (the oclCallOperation can
be considered as the implementation in OCL of
the CallAction defined in UML Action Seman-
tics [1]).

An important issue is to specify that the
remove operation is atomic. This cannot be
done with OCL, but we can consider that if
the statechart associated with an operation
does not contain blocking or timing constraints,
the operation is atomic (this is also true when
there is no statechart associated with an oper-
ation). However it would be useful to precisely
specify this atomicity by adding, for instance,

[! existsFittingTuple]

Searching Tuple

Waiting Tuple

[existsFittingTuple] / return

O

[existsFittingTuple] / return

Figure 4: Statechart of the Linda in(t) and read(t) operations

a constraint like {atomic} on the operations.

The read operation has the same behavior
as the in one but without removing the tuple
found. So, its OCL specification is quite obvi-
ous:

context LindaCoreMedium::
read(t:Tuple) : Tuple

post: result.match(t)

3.4 Statechart view

The OCL specifications are not suflicient to
completely specify the behavior of the in and
read operations. In particular, we need to use
statecharts associated with each service to de-
scribe the blocking conditions of these opera-
tions, ¢.e. their dynamic behavior.

Figure 4 represents the statechart associated
with the in and read operations (their dynamic
behaviors are the same). At the beginning of
the operation, the Searching Tuple state is im-
mediately reached and left, depending on the
value of existsFittingTuple. This expres-
sion is true when (at least) one tuple fitting
the tuple passed as parameter (t) belongs to
the space (at the time of the evaluation of the
expression). This expression can be written in
OCL, in order to make the link with the OCL
operation specifications and ensure coherence
between all the views:

existsFittingTuple = space->

select(t’ | t’.match(t))-> notEmpty
where t is the parameter passed to the in or
read operation and the OCL context is the Lin-
daCoreMedium class.

So, if there exists a tuple that fits template
t (guard [existsFittingTuple]), the op-
eration returns immediately, or else the Wait-
ing Tuple state is reached. It will be left only
when the [existsFittingTuple] guard has
become true, 7.e. when another component has
added a tuple by an out operation call that fits
template t.

The statechart view adds dynamic informa-
tions to the OCL view that only defined what
an operation does (its static behavior).

4 Conclusion and perspectives

Communication mediums are software reusable
components integrating any kind of commu-
nication services. We have presented how to
specify a medium in UML. Then, we have stud-
ied a simple medium integrating the Linda co-
ordination model.

Other mediums have already been specified,
including: a two-way asynchronous point to
point medium (resulting from the composition
of two one-way mediums), an event broadcast
medium, a voting medium [4] and a broad-
cast stream medium. During these specifica-
tions, we have encountered some expressivity
limitations in the definition of synchronization
and interaction between components, temporal
constraints or OCL specification of non-atomic
operations. The generalized use of OCL and
some small extensions make it possible to for-
mally link the static and behavioral parts of
a specification, and thus, specify a medium in
this entirety.

An interactive video application has been
already developed with a stream broadcast

A video-

conference application has also been developed,

medium and a voting medium [4].

using the same two mediums, illustrating the
reusability of mediums.

Our current work continues with medium
specification in UML. We are also developing
some medium prototypes in order to elabo-
rate a medium catalogue. We expect to retro-
analyze some real applications putting the com-
munication at the center of the analysis pro-
cess.

The medium specification methodology will
be integrated in a UML CASE tool, like Um-
laut®. This tool is dedicated to the manipula-
tion of UML models at the semantic level [6]
and will then make it possible to validate the
design and behavior of a medium [7]| (e.g. by
model checking based techniques or simula-
tion), and automatically generate the code as-
sociated with a medium, depending on the
component model target choice.

References

[1] Action Semantics Consortium. Uml action
semantics, proposal version 9.23, 3 March
2000. http://people.ce.mediaone.net-
/weigert/actionsemantics/home.html,
2000.

[2] Antoine Beugnard. Un Modéle Architec-
tural & Base de Composants pour les Ap-
plications Distribuéés. In Hermes, editor,

LMO’2000, 2000. (in french).

[3] Antoine Beugnard, Jean-Marc Jézéquel,
Noél Plouzeau, and Damien Watkins.
Making Components Contract Aware.
Compuler, pages 38-45, July 1999.

[4] Eric Cariou. Spécification de Com-
posants de Communication en UML. In

OCM’2000, May 2000. (in french).

[5] Chrysanthos Dellarocas. Software Compo-
nent Interconnection Should Be Treated as
a Distinct Design Problem. http://www. -
umcs .maine.edu/~ftp/wisr/wisr8/-

“http://www.irisa.fr/PAMPA/umlaut

[12]

papers/dellarocas/dellarocas.html,
1996.

Wai-Ming Ho, Jean-Marc Jézéquel, Alain
Le Guennec, and Francgois Pennaneac’h.
UMLAUT: an extendible UML transfor-
mation framework. In Proc. Automated
Software Engineering, ASE’99, Florida,
October 1999.

Jean-Marc Jézéquel, Alain Le Guennec,
and Frangois Pennaneac’h. Validating dis-
tributed software modelled with UML. In
Proc. Int. Workshop UMLY98, Mulhouse,
France, June 1998.

Thilo Kielmann. Designing a Coordina-
tion Model for Open Systems. In Springer
Verlag, editor, Coordination Languages
and Models, Lecture Notes in Computer
Science 1061, 1996.

Nenad Medvidovic and Richard N. Taylor.
A Classification and Comparison Frame-
work for Software Architecture Descrip-
tion Languages. Technical Report UCI-
ICS-97-02, Department of Information
and Computer Science, University of Cal-
ifornia, Irvine, 1997. http://www.ics.-
uci.edu/pub/arch/sw-and-pubs.html.

OMG. Unified Modeling Language Specifi-
cation, version 1. 3. http://www.omg.org,
1999.

Mary Shaw. Procedure Calls Are the As-
sembly Language of Software Interconnec-
tion: Connectors Deserve First-Class Sta-
tus. In D.A. Lamb, editor, Studies of
Software Design, Proceedings of a 1993
Workshop. Lecture Notes in Computer
Science 1078, Springer-Verlag, pp. 17-32,
1996. http://www.cs.cmu.edu/~Vit/-
paper_abstracts/FirstClConnTR.html.

Jos Warmer and Anneke Kleppe. The Ob-
gect Constraint Language : Precise Model-
g with UML. Addison-Wesley, 1998.

