
UML’02 – 04/10/2002

The Specification of UML Collaborations as
Interaction Components

Éric CARIOU Antoine BEUGNARD

GOALS

➤ Collaboration diagrams: core feature of UML

➤ Define an interaction abstraction at specification level

➤ But how to have interaction abstractions at implementation level?

➥ Classicaly, no more trace of these abstractions at this level

➥ Communication only through “low-level” primitives (RPC)

➤ Our proposition:

➥ The reification of interaction abstractions as software compo-
nents

➥ Methodology of UML specification of these components

The Specification of UML Collaborations as Interaction Components 2/22

OUTLINE

1. Study of a collaboration in a reservation application

2. A more interesting way to specify the collaboration

3. Introduction to interaction components

4. Methodology of interaction component specification in UML

The Specification of UML Collaborations as Interaction Components 3/22

A CAR PARK MANAGEMENT SYSTEM

➤ A car park with two accesses

➤ A display shows the number of available places

Information Display

Car

Access: accessOne

Access: accessTwo

Place CarPark

reserverobserver

source reserver

Car Place
Management

usesread

usesset

➤ The four components interact through a UML collaboration
The Specification of UML Collaborations as Interaction Components 4/22

THE COLLABORATION USED

/observer B.2 nbAvailablePlaces(availablePlaces)

A.2 nbAvailablePlaces(availablePlaces)

/source

A.1 placeId = newCarEntering()

B.1 carLeaving(placeId)

*

*
/reserver

➤ Simply shows messages sent among roles

The Specification of UML Collaborations as Interaction Components 5/22

REUSE OF THE COLLABORATION

➤ With minor changes:

➥ If the source is an airline company

➥ If reservers and observers are travel agencies
� reservation of places in a flight

➤ Warning: the data management system must be implemented by
the source role

� Why not putting this system into the collaboration?

The Specification of UML Collaborations as Interaction Components 6/22

NEW COLLABORATION DESIGN

/reserver

/observer

DataManager /source

ReserveId

A.2 / B.2 C.2/ nbAvailableId(availableId)

*

* *

dataSet

B.1 cancelReservation(reserveId)

C.1 setIdentifiers(reserveId[])

A.1 reserveId = reserveIdentifier()

➤ Use of generic identifiers

➤ Identifier management done in the collaboration

The Specification of UML Collaborations as Interaction Components 7/22

NEW CAR PARK MANAGEMENT APPLICATION DESIGN

Information Display

CarPark Access: accessOne

Access: accessTwo

Car

reserverobserver

source reserver

Management

usesread

uses

Reservation

➤ Place set has disappeared � inside the collaboration

The Specification of UML Collaborations as Interaction Components 8/22

FLIGHT SEAT RESERVATION APPLICATION DESIGN

TravelAgency:A Agency

TravelAgency:T Travel

Airline: ErnestAir
Reservation Management

source

reserver

reserver

observer

observer

➤ Reuse of the same collaboration � the same interaction abstrac-
tion

The Specification of UML Collaborations as Interaction Components 9/22

INTERACTION ABSTRACTIONS

➤ Comparison of the second collaboration design with the first one:

➥ Does “more”, more abstract

➥ Independent, “self-content”, consistent

� Define a high-level interaction abstraction:

➥ Easily usable and reusable

➥ At the specification level

The Specification of UML Collaborations as Interaction Components 10/22

INTERACTION ABSTRACTIONS

➤ High-level interaction abstractions are useful and interesting in
application architecture

➥ At specification level: UML Collaborations are suitable

➥ At implementation level: often, only low-level communication
primitives (RPC)

� We propose to use interaction components

➥ For manipulation of high-level interaction abstractions, even at
implementation level

➥ An interaction component is specified on the base of a UML
collaboration following our specification methodology

The Specification of UML Collaborations as Interaction Components 11/22

PROPERTIES OF SOFTWARE COMPONENTS

➤ An interaction component is first of all a software component :

➥ Independent and deployable software entity

➥ Specify offered and required services interfaces

➥ Subject to composition with other components

The Specification of UML Collaborations as Interaction Components 12/22

INTERACTION COMPONENTS (OR MEDIUMS)

Software component integrating any communication (coordination, in-
teraction) system or protocol

➤ Independently of its complexity: a consensus protocol, a multime-
dia stream broadcast, a voting system...

➤ At specification level: a UML collaboration following specific de-
sign rules

➤ At implementation and deployment levels: an instantiable compo-
nent � implementation of a UML collaboration

� Reification of an interaction abstraction all along the software pro-
cess

The Specification of UML Collaborations as Interaction Components 13/22

SPECIFICATION OF A MEDIUM: USAGE CONTRACT

➤ On the base of a UML collaboration:

➥ Depending on their needs, components using the medium play
different roles

➥ For each role: interfaces of offered and required services

➤ OCL for specifying the services semantics

➤ Statecharts and messages on collaborations for dynamic behavior

➤ Generalization of OCL expressions to link all the views

➤ And other UML features if needed
� Abstract specification: without implementation assumption

The Specification of UML Collaborations as Interaction Components 14/22

THE RESERVATION MEDIUM

/source

/reserver

/observer

setReserveIdSet(ReserveId[])

<< interface >>
ISourceMediumServices

ReserveIdReservationMedium

Boolean cancelerIsReserver
Boolean usable = false

ReserveId reserve()
cancel(ReserveId)

<< interface >>
IReserverMediumServices

<< interface >>
IObserverComponentServices

nbAvailableId(Integer)

*

*

*

reserved

*available

*originalSet

0..1

1

The Specification of UML Collaborations as Interaction Components 15/22

THE RESERVATION MEDIUM

setReserveIdSet(ReserveId[])

<< interface >>
ISourceMediumServices

ReserveIdReservationMedium

Boolean cancelerIsReserver
Boolean usable = false

ReserveId reserve()
cancel(ReserveId)

<< interface >>
IReserverMediumServices

<< interface >>
IObserverComponentServices

nbAvailableId(Integer)

*

*

*

reserved

*available

*originalSet

0..1

/source

/reserver

1

/observer

The Specification of UML Collaborations as Interaction Components 16/22

THE RESERVATION MEDIUM

/source

/reserver

/observer

ReserveId

*

*

*

reserved

*available

*originalSet

setReserveIdSet(ReserveId[])

<< interface >>
ISourceMediumServices

ReservationMedium

Boolean cancelerIsReserver
Boolean usable = false

ReserveId reserve()
cancel(ReserveId)

<< interface >>
IReserverMediumServices

<< interface >>
IObserverComponentServices

nbAvailableId(Integer)

0..1

1

The Specification of UML Collaborations as Interaction Components 17/22

THE RESERVATION MEDIUM

/source

/reserver

/observer

setReserveIdSet(ReserveId[])

<< interface >>
ISourceMediumServices

ReservationMedium

Boolean cancelerIsReserver
Boolean usable = false

ReserveId reserve()
cancel(ReserveId)

<< interface >>
IReserverMediumServices

<< interface >>
IObserverComponentServices

nbAvailableId(Integer)

*

*

*

reserved

*available

*originalSet

0..1
ReserveId

1

The Specification of UML Collaborations as Interaction Components 18/22

DYNAMICAL VIEW OF THE COLLABORATION

ReservationMedium/reserver

/source

/observer

*

*

A.1 setReserveIdSet(set)

B.1 id = reserve()

C.1 cancelReturn = cancel(id)

A.2 nbAvailableId(available −> size)
B.2 [id != null] nbAvailableId(available −> size)
C.2 [cancelReturn = true] nbAvailableId(available −> size)

The Specification of UML Collaborations as Interaction Components 19/22

OCL CONSTRAINTS FOR SERVICE SEMANTICS

context ReservationMedium::
setReserveIdSet(Set idSet, Boolean cancel)

pre:
usable = false

post:
originalSet = idSet
and available = idSet
and usable = true
and cancelerIsReserver = cancel
and reserver – � forAll(r

�
r.reserved – � isEmpty)

The Specification of UML Collaborations as Interaction Components 20/22

CONCLUSION

Interaction components: reification of interaction abstractions during
all the software process

➤ Manipulation of high-level interaction abstraction, even at the im-
plementation level

➤ Good usability and reusability of interaction abstractions

➤ A way to reify and implement a UML Collaboration

The Specification of UML Collaborations as Interaction Components 21/22

CONCLUSION

➤ Other parts of the work on interaction components:

➥ Definition of a specification refinement process: from abstract
specification to several implementations

➥ A Java framework (downloadable as free software) for imple-
menting mediums and applications in a distributed context

➤ For more information:

➥ Web: http://www-info.enst-bretagne.fr/medium/

➥ E-mail: Eric.Cariou@enst-bretagne.fr

The Specification of UML Collaborations as Interaction Components 22/22

