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Work on the design of efficient hardware implementations of asymmetric
cryptosystems using advanced arithmetic techniques:

o RSA [RSAT78]

@ Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH),
ElGamal [Elg85]

e Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The residue number system (RNS) is a representation which enables fast
computations for cryptosystems requiring large integers or Fp elements
through 'internal parallelism
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Residue Number System (RNS) [SV55] [Gar59]

X a large integer of ¢ bits (¢ > 200) is represented by:

(X) = (x1,.-.,%1) = (X mod my,...,X mod m,)
RNS base B = (my, ..., m,), n pairwise co-primes of w bits, n x w > ¢
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EMM = w-bit elementary modular multiplication in one channel
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RNS vs Positional Number Systems
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< involves data dependencies

involves hard access to positional information

Remark: here, one assumes a high radix positional representation of w bits
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RNS vs Positional Number Systems

| operation/feature || RNS | Positional Representation

multiplication
modular reduction
modular multiplication equivalent equivalent
expansion of values
comparisons
parallelism
flexibility
internal randomization
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Proposed Representation:

Hybrid Position-Residues HPR

ARITH 23, July 10 - 13 6 /25



Main principle of HPR (finite field case)

63 52
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Hybrid Position-Residues Representation HPR

Formally:
d—1 '
Xupr = (<Xd—1>a|b7 RN <X0>3|b)HPR with X = Z Xi M,
i=0
where
By = (Mg, my 2 1) and By = (myo, .. my 2 1),

n_q
M, = Hidzo my, and BminMs < Xi < BmaxMa (/Bmax — Bmin > 1)

2 RNS bases are required to contain temporary sub-products of HPR
words during a full multiplication

Remark 1: conversions are made using classical methods (radix
conversions and RNS conversions)

Remark 2: internal conversions between both RNS bases are made using
state-of-the-art base extension methods (e.g using CRT)
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Example for 1 HPR-word Multiplication (1/2)

Parameters: B, = (2,7,13), B, = (3,5,11), M, = 182, M}, = 165
Inputs: X =141, Y =101
Xupr = ((1,1,11,0,1,9) )
Yirrr = ((1,3,10,2,1,2) 1)
X x'Y = 14241
Xupr X YHPR = ((1 x1,1x3,11x10,0x2,1x1,9x 2)3“,)
= ((1,3,6,0,1,7)45)

The high part of the product must be propagated :

14241 =78 x 182+ 45 =78 x M, + 45
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Decomposition algorithm (Split)

Split decomposes a double word value into 2 HPR-words (i.e radix M,)

Input: (X),, with X < (8maxMa)? and My > 3. M,
Precomp.: (M; 1),
OUtPUt: (<Q>a|ba <R>a|b)

(R)a < (X)a (virtual operation)

(R)p < BE ((R)a, Ba, By) (n/d) x (n/d) EMMs

(Q)b = ((X)b — (R)b) x (M;h)p

if (Q)p=(—1), then
(Q)b + (0)p /*using Kawamura BE [KKSS00] */
(R)b < (R)b — (Ma)s

(@)s + BE ((Q)p, Bp, B,) (n/d) x (n/d) EMMs

Split becomes faster when d increases (but it reduces the parallelism)
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“High” part propagation in HPR

This algorithm uses Split to propagate the high parts ("MSBs" in radix
M,) of subproducts

Input: Xgpr = ((Xg_1),-- -, (Xo)) with X; < (BmaxMa)?
Output: Xypr = (<Xd>, ce <X0>) with X; < (6r2nax + 1)/\/]3
(C1) = (0), (Xg—1) < (0)
for i from 0 to d — 1 parallel do

| ((G), (X)) + SpLit((X;))
for i from 0 to d parallel do

| (X)) « (Xi) + (Ci—1)
return ((Xy),...,(Xo))

Remark: to propagate a carry after an addition, we use a small carry
propagation algorithm (details in the paper)
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Example for 1 HPR-Word Multiplication (2/2)

XxY=14241 =78 x 182+ 45 =78 x M, + 45
XHPR X YHPR = (<1 X ].,]. X 3,1]. X 10,0 X 2,1 X 1,9 X 2>a\b)
= ((1,3,6,0,1,7)3‘,,)
= ((0,1,0,0,3,1)3“,7 (1,3,6,0,0,1>a|b)
High part propagation

Using BE, convert 45 from B, to 53, : (1,3,6), — (0,0,1),
In B, perform the division by M,:

(XY)p = (XYM, )b

My — ((0,1,7)5 — (0,0,1)3) x (2,3,2),
= ((0,1,6)s) x (2,3,2)
=(0.3,1),

Finally one performs another BE from 5, to B, : (0,3,1), — (0,1,0),
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Application 1:
A New Modular Multiplication Algorithm
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Proposition:well-chosen finite fields [Fp for fast modular multiplications

@ example of application: finite field for ECC

P prime with P = Q(M,) and Q(X) = X9 — Q'(X) where Q' is sparse
e Fpisadx(n/d) x w= nw bits finite field
° Mg = Q'(M,) mod P
o toy example 1: P; = (2 x 7 x 13)2 =5 = M2 — 5 = 33119 is prime
o toy example 2: P, = (3 x5 x 11)3 —2 = M} — 2 = 27225 is prime

Main ldea:

Adapt pseudo-Mersenne modular multiplication for HPR representation
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HPR Modular Multiplication

Positional Modular Reduction: reduction using MY = Q'(M,) mod P
@ example: Q' =2 then Z; = Z;+2Z; 4 for i € [0,d — 1]

o s e St
OO0 0000 0000 OO0 OO0 OO0 -3
M My M M M, M
Parameters: B, with P = Q(M,) and Q of degree d

Input: Xupr, Yuprr
Output: Zgpgr with Z = XY mod P

Zgpr — HPR PI‘OdUCt(XHPR, YHPR) d2(n/d) = 2nd EMMs
Zupr < Positional Modular Reduction(Zgpr, Q) (n EMAs)
Zupr <+ HPR “High” Part Propagation (ZypRr) 2"72 -+ 2n EMMs
Zypr ¢ Positional Modular Reduction(Zgpr, Q) (n/d EMAs)
Zppr < HPR Small Carry Propagation (Zypr) 2n EMMs

return Zypp
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Cost of modular multiplication in RNS and HPR for

various fixed d

Operation cost:

o trade-off between HPR product and HPR High part propagation
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Impact of d for n and the field size fixed

Using schoolbook multiplication, d = y/n is the best trade-off
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Sources of Parallelism

Two main sources of parallelism:

@ parallelism due to digits in RNS: decreases while d increases

@ parallelism due to HPR algorithms

Assuming n hardware channels (as in usual RNS architectures):
e High Part propagation: 2 3 + 2 EMMs by parallel channel
@ HPR multiplication (schoolbook): 2d EMMs by parallel channel ...

@ ... but number additions increases with d, increasing dependencies
between the sub-products

Summary:

@ when d is small our algorithm is as parallel as RNS algorithms

@ in practice, dis small (= +/n)
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Application 2:
A New Exponentiation Algorithm
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Application 2: Modular Exponentiation

Idea: take benefit of positional information of HPR to accelerate some
specific, but usual computation patterns

Input: k= (kj_1,..., ki, ko)2, G € Z/NZ
Output: G¥ mod N
Z+1
for i from / —1 to 0 do

Z + 7Z° mod N

if k=1then S+ Z-G mod N
return Z

One can observe:
7°G = (ZEM2 +2Z,ZoM, + Z3) G mod N
= Z2|M2G|n + Z120|2M, G|y + Z2|G|n mod N
= 71 (Z1M2G|n + Zo[2M,G|n) + Z§| G|y mod N
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Proposed Regular Modular Exponentiation

2(d—1 -
For a general d : |Z2G|y = Zk(:o )27:01 ZiZi_i|MEG|y
Parameters: 5,, By, B. with n, = n, = n/d and nc = n
Input: (G),p|c, € the exponent
Output: (Z),p|c with Z = G® mod N, Z < 3P

<Z>a|b|c A <|Ma\b|P>a\b\c
for i from ¢ — 1 to 0 do

ZHPR RNStOHPR(<Z>a|b‘C,Ba,Bb,Bc) O(nz)
if ¢, =0 then
<Z>a|b|c — SubProducts(ZHpR, <|M3|b‘p>) O(d2)
<Z>a|b|c — RNS'MR(<Z>a|b|c’Ba\bvBC) O(n2)
else
<Z>a|b|c — SubProducts(ZHpR, (G)) O(d2)
<Z>a|b|c — RNS'MR(<Z>a|b|cha\bch) O(n2)

return (Z) |

Remark: conversions HPR to RNS are implicits
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Comparison with state-of-the-art RNS exponentiation
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Conclusion
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HPR Conclusion and Further Work

The representation HPR

@ reduces the cost of some RNS modular arithmetic algorithms with a
high level of parallelism (for small d)

@ enables to use positional properties (as the extensibility of the
representation) or tricks (as pseudo-Mersenne like numbers)

@ provides more flexibility with a lot of new trade-off possibilities
Examples of applications:

@ modular multiplication: HPR offers a reduction of computation cost
of 40 to 60% reduction (for ECC 256 — 512)

@ modular multiplication: HPR offers a reduction of computation cost
of 20 to 40% (for RSA 2048 — 4096)

Further works:

@ adaptation of other usual arithmetic algorithms (e.g. Montgomery or
Barrett Reduction Algorithms)

@ application to very large values (e.g. homomorphic encryption)
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Thank you for your attention
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Small Carry Propagation

Input: Xypr with X; < (m7 - 2)/\/’3 Vi e [0, d— ].]
Parameters: @' such that P = Q(M,) with Q = X9 — Q'
Precomp.: ‘I\/l;l‘m7
Output: Xgpr, Xi < 2M, + (mﬂ/ - 2) Vi e [0, d— 1]
for i from 0 to d — 1 do
’R,"m,y <+ BE (<X,‘>3, Ba, mw)
|C,'|m7 — |(X, — R")Ma_1|mw
if |C,",-n,Y = m, — 1 then ‘C,‘|m7 =0
(Xi)b < (Xi)b — |G tilmy X (Ma)b
for i from 1 to d — 1 parallel do
| (Xi)ap < (XD ajp + (Ci1)app
return Xypp
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