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Context

Work on the design of efficient hardware implementations of asymmetric
cryptosystems using advanced arithmetic techniques:

RSA [RSA78]

Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH),
ElGamal [Elg85]

Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The residue number system (RNS) is a representation which enables fast
computations for cryptosystems requiring large integers or FP elements
through internal parallelism
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Residue Number System (RNS) [SV55] [Gar59]

X a large integer of ` bits (` > 200) is represented by:
〈X 〉 = (x1, . . . , xn) = (X mod m1, . . . ,X mod mn)
RNS base B = (m1, . . . ,mn), n pairwise co-primes of w bits, n × w > `
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RNS relies on the Chinese remainder theorem (CRT)

EMM = w -bit elementary modular multiplication in one channel
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RNS vs Positional Number Systems
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RNS

involves data dependencies

involves hard access to positional information

Remark: here, one assumes a high radix positional representation of w bits
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RNS vs Positional Number Systems

operation/feature RNS Positional Representation

multiplication easier harder

modular reduction harder easier

modular multiplication equivalent equivalent

expansion of values harder easier

comparisons harder easier

parallelism easier harder

flexibility easier harder

internal randomization easier harder
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Proposed Representation:

Hybrid Position-Residues HPR
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Main principle of HPR (finite field case)
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Hybrid Position-Residues Representation HPR

Formally:

XHPR =
(
〈Xd−1〉a|b, . . . , 〈X0〉a|b

)
HPR

with X =
d−1∑
i=0

Xi M
i
a

where

Ba = (ma,0, . . . ,ma, n
d
−1) and Bb = (mb,0, . . . ,mb, n

d
−1),

Ma =
∏ n

d
−1

i=0 ma,i and βminMa 6 Xi 6 βmaxMa (βmax − βmin > 1)

2 RNS bases are required to contain temporary sub-products of HPR
words during a full multiplication

Remark 1: conversions are made using classical methods (radix
conversions and RNS conversions)

Remark 2: internal conversions between both RNS bases are made using
state-of-the-art base extension methods (e.g using CRT)
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Example for 1 HPR-word Multiplication (1/2)

Parameters: Ba = (2, 7, 13), Bb = (3, 5, 11), Ma = 182, Mb = 165

Inputs: X = 141, Y = 101

XHPR =
(
〈1, 1, 11, 0, 1, 9〉a|b

)
YHPR =

(
〈1, 3, 10, 2, 1, 2〉a|b

)
X × Y = 14241

XHPR × YHPR =
(
〈1× 1, 1× 3, 11× 10, 0× 2, 1× 1, 9× 2〉a|b

)
=
(
〈1, 3, 6, 0, 1, 7〉a|b

)
The high part of the product must be propagated :

14241 = 78× 182 + 45 = 78×Ma + 45
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Decomposition algorithm (Split)

Split decomposes a double word value into 2 HPR-words (i.e radix Ma)

Input: 〈X 〉a|b with X < (βmaxMa)2 and Mb > β2
maxMa

Precomp.: 〈M−1
a 〉b

Output:
(
〈Q〉a|b, 〈R〉a|b

)
〈R〉a ← 〈X 〉a (virtual operation)

〈R〉b ← BE (〈R〉a,Ba,Bb) (n/d)× (n/d) EMMs
〈Q〉b ← (〈X 〉b − 〈R〉b)× 〈M−1

a 〉b
if 〈Q〉b = 〈−1〉b then
〈Q〉b ← 〈0〉b /*using Kawamura BE [KKSS00] */
〈R〉b ← 〈R〉b − 〈Ma〉b

〈Q〉a ← BE (〈Q〉b,Bb,Ba) (n/d)× (n/d) EMMs
return 〈Q〉a|b , 〈R〉a|b

Split becomes faster when d increases (but it reduces the parallelism)
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“High” part propagation in HPR

This algorithm uses Split to propagate the high parts (”MSBs” in radix
Ma) of subproducts

Input: XHPR = (〈Xd−1〉, . . . , 〈X0〉) with Xi < (βmaxMa)2

Output: XHPR = (〈Xd〉, . . . , 〈X0〉) with Xi < (β2
max + 1)Ma

〈C−1〉 ← 〈0〉, 〈Xd−1〉 ← 〈0〉
for i from 0 to d − 1 parallel do

(〈Ci 〉, 〈Xi 〉)← Split(〈Xi 〉)
for i from 0 to d parallel do
〈Xi 〉 ← 〈Xi 〉+ 〈Ci−1〉

return (〈Xd〉, . . . , 〈X0〉)

Remark: to propagate a carry after an addition, we use a small carry
propagation algorithm (details in the paper)
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Example for 1 HPR-Word Multiplication (2/2)

X × Y = 14241 = 78× 182 + 45 = 78×Ma + 45

XHPR × YHPR =
(
〈1× 1, 1× 3, 11× 10, 0× 2, 1× 1, 9× 2〉a|b

)
=
(
〈1,3,6,0,1,7〉a|b

)
=
(
〈0,1,0,0,3,1〉a|b, 〈1,3,6,0,0,1〉a|b

)
High part propagation
Using BE, convert 45 from Ba to Bb : 〈1,3,6〉a −→ 〈0,0,1〉b
In Bb perform the division by Ma:

〈XY 〉b − 〈|XY |Ma〉b
〈Ma〉b

=
(
〈0,1,7〉b − 〈0,0,1〉b

)
× 〈2, 3, 2〉b

=
(
〈0, 1, 6〉b

)
× 〈2, 3, 2〉b

= 〈0,3,1〉b

Finally one performs another BE from Bb to Ba : 〈0,3,1〉b −→ 〈0,1,0〉a
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Application 1:
A New Modular Multiplication Algorithm
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Principle

Proposition:well-chosen finite fields FP for fast modular multiplications

example of application: finite field for ECC

P prime with P = Q(Ma) and Q(X ) = X d − Q ′(X ) where Q ′ is sparse

FP is a d × (n/d)× w = nw bits finite field

Md
a ≡ Q ′(Ma) mod P

toy example 1: P1 = (2× 7× 13)2 − 5 = M2
a − 5 = 33119 is prime

toy example 2: P2 = (3× 5× 11)3 − 2 = M3
b − 2 = 27225 is prime

Main Idea:

Adapt pseudo-Mersenne modular multiplication for HPR representation
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HPR Modular Multiplication

Positional Modular Reduction: reduction using Md
a ≡ Q ′(Ma) mod P

example: Q ′ = 2 then Zi = Zi + 2Zi+d for i ∈ [0, d − 1]

M0
aM1

aM2
aM3

aM4
aM5

a

d = 3
×2 ×2 ×2 + + +

Parameters: Ba with P = Q(Ma) and Q of degree d
Input: XHPR, YHPR

Output: ZHPR with Z = XY mod P

ZHPR ← HPR Product(XHPR,YHPR) d2(n/d) = 2nd EMMs
ZHPR ← Positional Modular Reduction(ZHPR, Q) (n EMAs)

ZHPR ← HPR “High” Part Propagation (ZHPR) 2 n2

d + 2n EMMs

ZHPR ← Positional Modular Reduction(ZHPR, Q) (n/d EMAs)
ZHPR ← HPR Small Carry Propagation (ZHPR) 2n EMMs
return ZHPR
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Cost of modular multiplication in RNS and HPR for
various fixed d

Operation cost:

trade-off between HPR product and HPR High part propagation
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Impact of d for n and the field size fixed

Using schoolbook multiplication, d =
√
n is the best trade-off
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Sources of Parallelism

Two main sources of parallelism:

parallelism due to digits in RNS: decreases while d increases

parallelism due to HPR algorithms

Assuming n hardware channels (as in usual RNS architectures):

High Part propagation: 2 n
d + 2 EMMs by parallel channel

HPR multiplication (schoolbook): 2d EMMs by parallel channel ...

... but number additions increases with d , increasing dependencies
between the sub-products

Summary:

when d is small our algorithm is as parallel as RNS algorithms

in practice, d is small (≈
√
n)
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Application 2:
A New Exponentiation Algorithm
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Application 2: Modular Exponentiation

Idea: take benefit of positional information of HPR to accelerate some
specific, but usual computation patterns

Input: k = (k`−1, . . . , k1, k0)2, G ∈ Z/NZ
Output: G k mod N
Z ← 1
for i from `− 1 to 0 do

Z ← Z 2 mod N
if ki = 1 then S ← Z · G mod N

return Z

One can observe:

Z 2G ≡
(
Z 2

1M
2
a + 2Z1Z0Ma + Z 2

0

)
G mod N

≡ Z 2
1 |M2

aG |N + Z1Z0|2MaG |N + Z 2
0 |G |N mod N

≡ Z1

(
Z1|M2

aG |N + Z0|2MaG |N
)

+ Z 2
0 |G |N mod N
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Proposed Regular Modular Exponentiation

For a general d : |Z 2G |N ≡
∑2(d−1)

k=0

∑d−1
i=0 ZiZk−i |Mk

a G |N
Parameters: Ba,Bb,Bc with na = nb = n/d and nc = n
Input: 〈G 〉a|b|c , e the exponent
Output: 〈Z 〉a|b|c with Z = G e mod N, Z < 3P

〈Z 〉a|b|c ← 〈|Ma|b|P〉a|b|c
for i from `− 1 to 0 do

ZHPR ← RNStoHPR(〈Z 〉a|b|c ,Ba,Bb,Bc) O(n2)

if ei = 0 then
〈Z 〉a|b|c ← SubProducts(ZHPR, 〈|Ma|b|P〉) O(d2)

〈Z 〉a|b|c ← RNS-MR(〈Z 〉a|b|c ,Ba|b,Bc ) O(n2)

else
〈Z 〉a|b|c ← SubProducts(ZHPR, 〈G 〉) O(d2)

〈Z 〉a|b|c ← RNS-MR(〈Z 〉a|b|c ,Ba|b,Bc ) O(n2)
return 〈Z 〉a|b|c
Remark: conversions HPR to RNS are implicits
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Comparison with state-of-the-art RNS exponentiation
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Conclusion
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HPR Conclusion and Further Work

The representation HPR

reduces the cost of some RNS modular arithmetic algorithms with a
high level of parallelism (for small d)

enables to use positional properties (as the extensibility of the
representation) or tricks (as pseudo-Mersenne like numbers)

provides more flexibility with a lot of new trade-off possibilities

Examples of applications:

modular multiplication: HPR offers a reduction of computation cost
of 40 to 60% reduction (for ECC 256 – 512)

modular multiplication: HPR offers a reduction of computation cost
of 20 to 40% (for RSA 2048 – 4096)

Further works:

adaptation of other usual arithmetic algorithms (e.g. Montgomery or
Barrett Reduction Algorithms)

application to very large values (e.g. homomorphic encryption)
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Thank you for your attention
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Small Carry Propagation

Input: XHPR with Xi < (mγ − 2)Ma ∀i ∈ [0, d − 1]
Parameters: Q ′ such that P = Q(Ma) with Q = X d − Q ′

Precomp.:
∣∣M−1

a

∣∣
mγ

Output: XHPR, Xi < 2Ma + (mγ − 2) ∀i ∈ [0, d − 1]

for i from 0 to d − 1 do
|Ri |mγ ← BE (〈Xi 〉a,Ba,mγ)
|Ci |mγ ←

∣∣(Xi − Ri )M
−1
a

∣∣
mγ

if |Ci |mγ = mγ − 1 then |Ci |mγ = 0
〈Xi 〉b ← 〈Xi 〉b − |Ci ,H |mγ × 〈Ma〉b

for i from 1 to d − 1 parallel do
〈Xi 〉a|b ← 〈Xi 〉a|b + 〈Ci−1〉a|b

return XHPR
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