Improving Modular Inversion in RNS using the Plus-Minus Method

Karim Bigou and Arnaud Tisserand

IRISA-CAIRN

CHES 2013: August 20-23

Context and Objectives

Research group main objective:

Design hardware implementations of cryptoprocessor for ECC (elliptic curve cryptography) on FPGA and ASIC

Various aspects of arithmetic operators for ECC:

- algorithms
- representations of numbers
- hardware implementations

This work

Modular inversion operators in the residue number system (RNS)

My Ph. D. objectives:

- natural parallelism \rightarrow speed
- natural support for randomization \rightarrow protection against some side-channel attacks (SCA)

Residue Number System (RNS) [8] [3]

X and Y two \mathbb{F}_P elements (160–600 bits) are represented by: $\overrightarrow{X} = (x_1, \dots, x_n) = (X \mod m_1, \dots, X \mod m_n)$ $\overrightarrow{Y} = (y_1, \dots, y_n) = (Y \mod m_1, \dots, Y \mod m_n)$

Modular operations over w-bit chunks, e.g. w is 16–64

with $n \times w \ge \log_2 P$

Karim Bigou and Arnaud Tisserand

Pros:

- Carry-free between channels
 - each channel is independant
- Fast parallel $+, -, \times$ and some exact divisions
 - computations over all channels can be performed in parallel
 - a multiplication requires *n* modular multiplications of *w*-bit words
- Non-positional number system
 - randomization of computations (SCA countermeasures)

Cons:

• comparison, modular reduction and division are hard

4 / 19

Base Extension [9]

- Usual technique for modular reduction: add redundancy using 2 bases
- $\mathcal{B} = (m_1, \dots, m_n)$ and $\mathcal{B}' = (m'_1, \dots, m'_n)$ are coprime RNS bases
- X is \overrightarrow{X} in \mathcal{B} and \overrightarrow{X}' in \mathcal{B}'
- The base extension (BE, introduced in [9]) is defined by:

$$\overrightarrow{X}' = BE(\overrightarrow{X}, \mathcal{B}, \mathcal{B}')$$

- Some operations become possible after a base extension
 - $M = \prod_{i=1}^{n} m_i$ is invertible in \mathcal{B}'
 - exact division by *M* can be done easily
- State-of-art *BE* algorithms cost $n^2 + n$ *w*-bit modular multiplications

RNS Montgomery Reduction (RNS-MR) [7]

How to exploit RNS properties?

Maximizing the use of fully parallelizable operations, e.g. computing patterns in the form of $(AB + CD) \mod P$

State-of-art RNS modular inversion (FLT-RNS) [4, 2]:

- based on Fermat's Little Theorem (FLT): $X^{-1} = X^{P-2} \mod P$
- requires a large exponentiation
- involves a lot of modular reductions
- parallelization is very limited due to data dependencies

FLT-RNS complexity: $O(\log_2 P \times n^2)$ multiplications of w-bit words

Binary Extended Euclidean from [6]§ 4.5.2

Input: $X, P \in \mathbb{N}$, P > 2 with gcd(X, P) = 1**Output**: $|X^{-1}|_{P}$ $(U_1, U_3) \leftarrow (0, P), (V_1, V_3) \leftarrow (1, X)$ while $V_3 \neq 1$ and $U_3 \neq 1$ do while $|V_3|_2 = 0$ do $V_3 \leftarrow \frac{V_3}{2}$ if $|V_1|_2 = 0$ then $V_1 \leftarrow \frac{V_1}{2}$ else $V_1 \leftarrow \frac{V_1+P}{2}$ while $|U_3|_2 = 0$ do $U_3 \leftarrow \frac{U_3}{2}$ **if** $|U_1|_2 = 0$ then $U_1 \leftarrow \frac{U_1}{2}$ else $U_1 \leftarrow \frac{U_1+P}{2}$ if $V_3 > U_3$ then $V_3 \leftarrow V_3 - U_3$, $V_1 \leftarrow V_1 - U_1$ else $U_3 \leftarrow U_3 - V_3$, $U_1 \leftarrow U_1 - V_1$ if $V_3 = 1$ then return $|V_1|_P$ else return $|U_1|_P$

Extended Euclidean algorithms are not used due to comparison and division costs in $\ensuremath{\mathsf{RNS}}$

Our proposition is based on binary extended Euclidean algorithm, where comparisons are replaced by cheaper operations using Plus-Minus (PM) trick [1]:

• if X and Y are odd then $X + Y = 0 \mod 4$ or $X - Y = 0 \mod 4$

We only choose odd moduli:

• multiplication by $4^{-1} \leftrightarrow \text{division}$ by 4

To use Plus-Minus trick we must define a cheap mod4

Our proposition must be efficient on the state-of-art architecture of ECC with RNS, reuses and adapts existing blocks

Proposed Algorithm (PM-RNS) (2/4)

Input:
$$\overrightarrow{X}$$
, $P > 2$ with $gcd(X, P) = 1$
Output: $\overrightarrow{S} = |\overrightarrow{X^{-1}}|_P$, $S < 2P$
Initialisations
while $\widehat{V_3} \neq \widehat{\pm 1}$ and $\widehat{U_3} \neq \widehat{\pm 1}$ do
while $|b_{V_3}|_2 = 0$ do
if $b_{V_3} = 0$ then $r \leftarrow 2$ else $r \leftarrow 1$
 $\widehat{V_3} \leftarrow \operatorname{div2r}(\widehat{V_3}, r), \widehat{V_1} \leftarrow \operatorname{div2r}(\widehat{V_1}, r)$
 $b_{V_3} \leftarrow \operatorname{mod4}(\widehat{V_3}), b_{V_1} \leftarrow \operatorname{mod4}(\widehat{V_1}), v \leftarrow v + r$
 $\widehat{V_3^*} \leftarrow \widehat{V_3}, \widehat{V_1^*} \leftarrow \widehat{V_1}$
if $|b_{V_3} + b_{U_3}|_4 = 0$ then
 $\widehat{V_3} \leftarrow \operatorname{div2r}(\widehat{V_3} + \widehat{U_3}, 2), \widehat{V_1} \leftarrow \operatorname{div2r}(\widehat{V_1} + \widehat{U_1}, 2)$
 $b_{V_3} \leftarrow \operatorname{mod4}(\widehat{V_3}), b_{V_1} \leftarrow \operatorname{mod4}(\widehat{V_1})$
else
 $\widehat{V_3} \leftarrow \operatorname{div2r}(\widehat{V_3} - \widehat{U_3}, 2), \widehat{V_1} \leftarrow \operatorname{div2r}(\widehat{V_1} - \widehat{U_1}, 2)$
 $b_{V_3} \leftarrow \operatorname{mod4}(\widehat{V_3}), b_{V_1} \leftarrow \operatorname{mod4}(\widehat{V_1})$
if $v > u$ then $\widehat{U_3} \leftarrow \widehat{V_3^*}, \widehat{U_1} \leftarrow \widehat{V_1^*}, u \leftrightarrow v$
 $v \leftarrow v + 1$
Final corrections

Karim Bigou and Arnaud Tisserand

Global Architecture (adaptation of [4])

Karim Bigou and Arnaud Tisserand

Proposed Algorithm (PM-RNS) (3/4)

To use Plus-Minus trick we must define a cheap $\operatorname{mod}4$ using CRT:

$$|X|_{4} = \left| \left| \sum_{i=1}^{n} \left| x_{i} \cdot M_{i}^{-1} \right|_{m_{i}} \cdot M_{i} \right|_{M} \right|_{4} = |s - q \cdot M|_{4} = s - |q \cdot M|_{4}$$
$$M = \prod_{i=1}^{n} m_{i}, M_{i} = \frac{M}{m_{i}} \text{ and } q = \left\lfloor \frac{\sum_{i=1}^{n} \left| x_{i} \cdot M_{i}^{-1} \right|_{m_{i}} \cdot M_{i}}{M} \right\rfloor$$

Kawamura's approximation [5] of q:

$$q = \left\lfloor \sum_{i=1}^{n} \frac{|x_i \cdot M_i^{-1}|_{m_i}}{m_i} \right\rfloor \approx \left\lfloor \sum_{i=1}^{n} \frac{trunc(|x_i \cdot M_i^{-1}|_{m_i})}{2^w} \right\rfloor$$

The Cox module

with

- computes q: sum of n values of t = 6 bits (MSBs)
- computes s: sum of n 2-bit values modulo 4

The main differences with [4] comes from the Cox:

- In [4], the CRT sum was performed in *n* cycles, here in 1
- In [4], the Cox only computes q (not s)

Proposed Algorithm (PM-RNS) (4/4)

Kawamura's approximation of q requires $0 \le X < (1 - err_{max})M$, with $err_{max} \in [0, 1[$ but PM requires subtractions. For instance $X = |U - V|_M = |-1|_M = M - 1$ so $X > (1 - err_{max})M$ \widehat{X} is an affine function of \overrightarrow{X} defined as

 $\widehat{X} = \left((x_1 + c_1) \cdot M_1^{-1}, \dots, (x_n + c_n) \cdot M_n^{-1} \right)_{\mathcal{B}}$

• $\overrightarrow{C} = (c_1, \ldots, c_n)$ is 0 mod 4 : $\operatorname{mod4}(\widehat{X}) = |X|_4$

- -P < X < P in PM-RNS, so if $P \leq C < (1 err_{max})M P$ then $0 \leq \widehat{X} < (1 err_{max})M$
- the factor (M₁⁻¹,..., M_n⁻¹) is included and done once for the computation of q and s

Remark: div2r is designed to handle properly \widehat{X} , i.e. it returns the hat representation of the expected output (for instance $(\widehat{X+P})$)

Our proposition:

- On average, 0.71 log₂ P main loop iterations
- PM-RNS works without base extension
- Total average complexity: $O(\log_2 P \times n)$

Example: for 192 bits (number of *w*-bit modular multiplications):

$n \times w$	FLT-RNS	PM-RNS	Gain Factor	
12×17	103140	5474	18	
9 × 22	61884	4106	15	
7 × 29	40110	3193	12	

Remark: state-of-art FLT-RNS complexity is $O(\log_2 P \times n^2)$ multiplications of *w*-bit words

PM-RNS and FLT-RNS have been fully implemented:

- using the same CAD tools (ISE 12.4)
- on Virtex 5 FPGAs
- with the same synthesis options and efforts
- and have an optimized implementation (for fair comparison)

For both algorithms, 2 field sizes have been implemented:

- 192 bits
- 384 bits

For each size, 3 couples (n, w) have been implemented

Timing Implementation Comparison

Virtex 5 results with DSP blocks and BRAMs, with $w \in \{17, 22, 29\}$ for 192 bits and $w \in \{22, 29, 33\}$ for 384 bits:

Area Implementation Results Comparison

Karim Bigou and Arnaud Tisserand

Our proposition:

- is about 6–8 times faster than the best state-of-art solution
- with a small area overhead on RNS operator for ECC
- full FPGA optimization and fair comparison

Future works on hardware implementation:

- improve FPGA implementation of the new inversion
- integration in a complete ECC processor in RNS
- implementation of randomization for a scalar multiplication
- study speed vs. area trade-offs

Thank you for your attention

We thank the anonymous reviewers, Thomas Chabrier, Jérémy Métairie and Nicolas Guillermin for their valuable comments. This work has been supported in part by a PhD grant from *DGA–INRIA* and by the PAVOIS project (ANR 12 BS02 002 01).

References I

- R. P. Brent and H. T. Kung. Systolic VLSI arrays for polynomial GCD computation. *IEEE Transactions on Computers*, C-33(8):731–736, August 1984.
- [2] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi. An algorithmic and architectural study on montgomery exponentiation in RNS. *IEEE Transactions on Computers*, 61(8):1071–1083, August 2012.
- [3] H. L. Garner. The residue number system. *IRE Transactions on Electronic Computers*, EC-8(2):140–147, June 1959.
- [4] N. Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over \mathbb{F}_{p} .

In *Proc. Cryptographic Hardware and Embedded Systems (CHES)*, volume 6225 of *LNCS*, pages 48–64, Santa Barbara, CA, USA, August 2010. Springer.

 [5] S. Kawamura, M. Koike, F. Sano, and A. Shimbo.
 Cox-rower architecture for fast parallel montgomery multiplication.
 In Proc. 19th International Conference on the Theory and Application of Cryptographic (EUROCRYPT), volume 1807 of LNCS, pages 523–538, Bruges, Belgium, May 2000. Springer. [6] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 3rd edition, 1997.

- K. C. Posch and R. Posch.
 Modulo reduction in residue number systems.
 IEEE Transactions on Parallel and Distributed Systems, 6(5):449–454, May 1995.
- [8] A. Svoboda and M. Valach.
 Operátorové obvody (operator circuits in czech).
 Stroje na Zpracování Informací (Information Processing Machines), 3:247–296, 1955.
- N. S. Szabo and R. I. Tanaka. Residue arithmetic and its applications to computer technology. McGraw-Hill, 1967.

X, Y, P : n words of w bits

Elementary operations: mult. = w-bit multiplication

Operation	RNS (mult.)	Standard (mult.)		
XY	2 n	n ²		
X mod P	$2 n^2 + 4 n$	$n^{2} + n$		
XY mod P	$2 n^2 + 6n$	$2 n^2 + n$		
$(X_1Y_1 + X_2Y_2) \mod P$	$2 n^2 + 8 n$	$3 n^2 + n$		
$\left(\sum_{i=1}^k X_i Y_i\right) \mod P$	$2n^2 + (4+2k)n$	$(1+k) n^2 + n$		

Factor 2 in RNS XY is due to the use of 2 bases and BEs

For each main loop iteration:

- the inner loop has on average $\frac{2}{3}$ iterations
- RNS \times and div2r cost *n w*-bit modular multiplications
- RNS +, cost *n* modular *w*-bit additions
- mod4 requires *n* additions of *t*-bit values and n + 1 modulo 4 additions

Note: t is the number of truncated bits in q approximation

Our FLT-RNS implementation:

- is based on the state-of-art one [4] (with the original Cox)
- uses state-of-art Gandino's algorithm [2] to perform RNS exponentiation
- has a better pipeline filling than state-of-art one [4] (control dedicated to the inversion here)

Operations Count

Algo.	l	$n \times w$	w-bit EMM	w-bit EMA	cox-add	mod4-add
	192	12×17	103140	85950	6876	0
		9×22	61884	48991	5157	0
FIT BNS		7×29	40110	30083	4011	0
1 11-1(1\5		18×22	434322	382617	20682	0
	384	14×29	273462	233247	16086	0
		12×33	206820	172350	13788	0
	192	12×17	137520	114600	9168	0
		9×22	85512	65322	6876	0
FLT-RNS NIST		7×29	53480	40110	5348	0
	384	18×22	579096	510156	27576	0
		14×29	364616	310996	21448	0
		12×33	275760	229800	18 384	0
PM-RNS		12×17	5474	8750	5474	5930
	192	9×22	4106	6562	4106	4562
		7×29	3193	5104	3193	3650
	384	18×22	16487	26376	16487	17402
		14×29	12823	20514	12823	13738
		12×33	10991	17584	10991	11907

Karim Bigou and Arnaud Tisserand

RNS Plus-Minus Modular Inversion

FPGA Implementation Results with Dedicated Hard Blocks

			Area			Freq.	Number	Duration
Algo.	ℓ	$n \times w$	slices (FF/LUT)	DSP	BRAM	MHz	of cycles	$\mu { m s}$
	192	12×17	2473 (2995/7393)	26	0	186	13416	72.1
		9×22	2426 (3001/7150)	29	0	185	11272	60.9
FIT BNS		7×29	2430 (3182/6829)	48	0	107	9676	90.4
1 11-1110	384	18×22	4782 (5920/14043)	56	0	178	34359	193.0
		14×29	5554 (5910/16493)	98	14	110	28416	258.3
		12×33	5236 (5710/15418)	84	12	107	25911	242.1
PM-RNS -	192	12×17	2332 (3371/6979)	26	0	187	1753	9.3
		9×22	2223 (3217/6706)	29	0	187	1753	9.3
		7×29	2265 (3336/6457)	48	0	120	1753	14.6
	384	18×22	4064 (5932/13600)	56	0	152	3518	23.1
		14×29	4873 (6134/14347)	98	14	102	3518	34.4
		12×33	4400(5694/12764)	84	24	103	3518	34.1

26 / 19

FPGA Implementation Results without Dedicated Hard Blocks

			Area			Freq.	Number	Duration
Algo.	ℓ	$n \times w$	slices (FF/LUT)	DSP	BRAM	MHz	of cycles	$\mu { m s}$
		12×17	4071 (4043/12864)	4	0	128	13416	104.8
	192	9×22	4155 (3816/13313)	4	0	122	11272	92.3
ELT DNG		7×29	4575 (3952/15264)	0	0	126	9676	76.7
1.11-1(1/2	384	18×22	7559 (7831/27457)	0	0	163	34359	210.7
		14×29	9393 (7818/30536)	0	0	126	28416	225.5
		12×33	$9888 \ (7640/31599)$	0	0	107	25911	242.1
PM-RNS -	192	12×17	3899 (4212/12519)	4	0	150	1753	11.6
		9×22	3809(3986/12782)	4	0	146	1753	12.0
		7×29	4341 (4107/14981)	0	0	141	1753	12.4
	384	18×22	7677 (8053/128306)	0	0	168	3518	20.9
		14×29	9119(8113/30619)	0	0	127	3518	27.7
		12×33	9780 (7908/31902)	0	0	108	3518	32.5