Improving Modular Inversion in RNS using the Plus-Minus Method

Karim Bigou and Arnaud Tisserand

IRISA-CAIRN
CHES 2013: August 20-23

Context and Objectives

Research group main objective:
Design hardware implementations of cryptoprocessor for ECC (elliptic curve cryptography) on FPGA and ASIC

Various aspects of arithmetic operators for ECC:

- algorithms
- representations of numbers
- hardware implementations

This work

Modular inversion operators in the residue number system (RNS)
My Ph. D. objectives:

- natural parallelism \rightarrow speed
- natural support for randomization \rightarrow protection against some side-channel attacks (SCA)

Residue Number System (RNS) [8] [3]

X and Y two \mathbb{F}_{P} elements (160-600 bits) are represented by:
$\vec{X}=\left(x_{1}, \ldots, x_{n}\right)=\left(X \bmod m_{1}, \ldots, X \bmod m_{n}\right)$
$\vec{Y}=\left(y_{1}, \ldots, y_{n}\right)=\left(Y \bmod m_{1}, \ldots, Y \bmod m_{n}\right)$
Modular operations over w-bit chunks, e.g. w is $16-64$

RNS base $\mathcal{B}=\left(m_{1}, \ldots, m_{n}\right), n$ co-prime integers of w bits with $n \times w \geqslant \log _{2} P$

RNS Properties

Pros:

- Carry-free between channels
- each channel is independant
- Fast parallel,,$+- \times$ and some exact divisions
- computations over all channels can be performed in parallel
- a multiplication requires n modular multiplications of w-bit words
- Non-positional number system
- randomization of computations (SCA countermeasures)

Cons:

- comparison, modular reduction and division are hard

Base Extension [9]

- Usual technique for modular reduction: add redundancy using 2 bases
- $\mathcal{B}=\left(m_{1}, \ldots, m_{n}\right)$ and $\mathcal{B}^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ are coprime RNS bases
- X is \vec{X} in \mathcal{B} and \vec{X}^{\prime} in \mathcal{B}^{\prime}
- The base extension ($B E$, introduced in [9]) is defined by:

$$
\vec{X}^{\prime}=B E\left(\vec{X}, \mathcal{B}, \mathcal{B}^{\prime}\right)
$$

- Some operations become possible after a base extension
- $M=\prod_{i=1}^{n} m_{i}$ is invertible in \mathcal{B}^{\prime}
- exact division by M can be done easily
- State-of-art $B E$ algorithms cost $n^{2}+n$-bit modular multiplications

RNS Montgomery Reduction (RNS-MR) [7]

Input: $\vec{X}, \vec{X}^{\prime}$ with $X<\alpha P^{2}<P M$ and $2 P<M^{\prime}$
Output: $\left(\vec{\omega}, \vec{\omega}^{\prime}\right)$ with $\omega \equiv X \times M^{-1} \bmod P$ $0 \leqslant \omega<2 P$

$\vec{\omega} \longleftarrow B E\left(\vec{\omega}^{\prime}, \mathcal{B}^{\prime}, \mathcal{B}\right)$

RNSMR cost: $2 n^{2}+O(n) w$-bit modular multiplications
How to exploit RNS properties?
Maximizing the use of fully parallelizable operations, e.g. computing patterns in the form of $(A B+C D) \bmod P$

State-of-Art RNS Inversion Algorithm

State-of-art RNS modular inversion (FLT-RNS) [4, 2]:

- based on Fermat's Little Theorem (FLT): $X^{-1}=X^{P-2} \bmod P$
- requires a large exponentiation
- involves a lot of modular reductions
- parallelization is very limited due to data dependencies

FLT-RNS complexity: $O\left(\log _{2} P \times n^{2}\right)$ multiplications of w-bit words

Binary Extended Euclidean from [6]§ 4.5.2

Input: $X, P \in \mathbb{N}, \quad P>2$ with $\operatorname{gcd}(X, P)=1$
Output: $\left|X^{-1}\right|_{P}$
$\left(U_{1}, U_{3}\right) \leftarrow(0, P), \quad\left(V_{1}, V_{3}\right) \leftarrow(1, X)$
while $V_{3} \neq 1$ and $U_{3} \neq 1$ do
while $\left|V_{3}\right|_{2}=0$ do
$V_{3} \leftarrow \frac{V_{3}}{2}$
if $\left|V_{1}\right|_{2}=0$ then $V_{1} \leftarrow \frac{V_{1}}{2}$ else $V_{1} \leftarrow \frac{V_{1}+P}{2}$
while $\left|U_{3}\right|_{2}=0$ do
$U_{3} \leftarrow \frac{U_{3}}{2}$
if $\left|U_{1}\right|_{2}=0$ then $U_{1} \leftarrow \frac{U_{1}}{2}$ else $U_{1} \leftarrow \frac{U_{1}+P}{2}$
if $V_{3} \geq U_{3}$ then $V_{3} \leftarrow V_{3}-U_{3}, V_{1} \leftarrow V_{1}-U_{1}$
else $U_{3} \leftarrow U_{3}-V_{3}, U_{1} \leftarrow U_{1}-V_{1}$
if $V_{3}=1$ then return $\left|V_{1}\right|_{P}$ else return $\left|U_{1}\right|_{P}$
Extended Euclidean algorithms are not used due to comparison and division costs in RNS

Proposed Algorithm (PM-RNS) (1/4)

Our proposition is based on binary extended Euclidean algorithm, where comparisons are replaced by cheaper operations using Plus-Minus (PM) trick [1]:

- if X and Y are odd then $X+Y=0 \bmod 4$ or $X-Y=0 \bmod 4$

We only choose odd moduli:

- multiplication by $4^{-1} \leftrightarrow$ division by 4

To use Plus-Minus trick we must define a cheap mod4

Our proposition must be efficient on the state-of-art architecture of ECC with RNS, reuses and adapts existing blocks

Proposed Algorithm (PM-RNS) (2/4)

Input: $\vec{X}, P>2$ with $\operatorname{gcd}(X, P)=1$
Output: $\vec{S}=\overrightarrow{\left|X^{-1}\right|_{P}}, S<2 P$
Initialisations
while $\widehat{V_{3}} \neq \widehat{ \pm 1}$ and $\widehat{U_{3}} \neq \widehat{ \pm 1}$ do
while $\left|b_{V_{3}}\right|_{2}=0$ do
if $b_{V_{3}}=0$ then $r \leftarrow 2$ else $r \leftarrow 1$
$\widehat{V_{3}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{3}}, r\right), \widehat{V_{1}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{1}}, r\right)$
$b_{V_{3}} \leftarrow \bmod 4\left(\widehat{V_{3}}\right), b_{V_{1}} \leftarrow \bmod 4\left(\widehat{V_{1}}\right), v \leftarrow v+r$
$\widehat{V_{3}^{*}} \leftarrow \widehat{V_{3}}, \widehat{V_{1}^{*}} \leftarrow \widehat{V_{1}}$
if $\left|b_{V_{3}}+b_{U_{3}}\right|_{4}=0$ then
$\widehat{V_{3}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{3}}+\widehat{U_{3}}, 2\right), \widehat{V_{1}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{1}}+\widehat{U_{1}}, 2\right)$
$b_{V_{3}} \leftarrow \bmod 4\left(\widehat{V_{3}}\right), b_{V_{1}} \leftarrow \bmod 4\left(\widehat{V_{1}}\right)$
else

$$
\begin{aligned}
& \widehat{V_{3}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{3}}-\widehat{U_{3}}, 2\right), \widehat{V_{1}} \leftarrow \operatorname{div} 2 \mathrm{r}\left(\widehat{V_{1}}-\widehat{U_{1}}, 2\right) \\
& b_{V_{3}} \leftarrow \bmod 4\left(\widehat{V_{3}}\right), b_{V_{1}} \leftarrow \bmod 4\left(\widehat{V_{1}}\right)
\end{aligned}
$$

if $v>u$ then $\widehat{U_{3}} \leftarrow \widehat{V_{3}^{*}}, \widehat{U_{1}} \leftarrow \widehat{V_{1}^{*}}, u \leftrightarrow v$
$v \leftarrow v+1$
Final corrections

Global Architecture (adaptation of [4])

Proposed Algorithm (PM-RNS) (3/4)

To use Plus-Minus trick we must define a cheap $\bmod 4$ using CRT:

$$
|X|_{4}=\left.\left.\left|\left|\sum_{i=1}^{n}\right| x_{i} \cdot M_{i}^{-1}\right|_{m_{i}} \cdot M_{i}\right|_{M}\right|_{4}=|s-q \cdot M|_{4}=s-|q \cdot M|_{4}
$$

with $M=\prod_{i=1}^{n} m_{i}, M_{i}=\frac{M}{m_{i}}$ and $q=\left\lfloor\frac{\sum_{i=1}^{n}\left|x_{i} \cdot M_{i}^{-1}\right|_{m_{i}} \cdot M_{i}}{M}\right\rfloor$
Kawamura's approximation [5] of q :

$$
q=\left\lfloor\sum_{i=1}^{n} \frac{\left|x_{i} \cdot M_{i}^{-1}\right| m_{i}}{m_{i}}\right\rfloor \approx\left\lfloor\sum_{i=1}^{n} \frac{\operatorname{trunc}\left(\left|x_{i} \cdot M_{i}^{-1}\right| m_{i}\right)}{2^{w}}\right\rfloor
$$

The Cox module

- computes q : sum of n values of $t=6$ bits (MSBs)
- computes s : sum of $n 2$-bit values modulo 4

The main differences with [4] comes from the Cox:

- In [4], the CRT sum was performed in n cycles, here in 1
- In [4], the Cox only computes q (not s)

Proposed Algorithm (PM-RNS) (4/4)

Kawamura's approximation of q requires $0 \leqslant X<\left(1-e r r_{\max }\right) M$, with err $_{\text {max }} \in[0,1[$ but PM requires subtractions. For instance $X=|U-V|_{M}=|-1|_{M}=M-1$ so $X>\left(1-\right.$ err $\left._{\max }\right) M$
\widehat{X} is an affine function of \vec{X} defined as

$$
\widehat{X}=\left(\left(x_{1}+c_{1}\right) \cdot M_{1}^{-1}, \ldots,\left(x_{n}+c_{n}\right) \cdot M_{n}^{-1}\right)_{\mathcal{B}}
$$

- $\vec{C}=\left(c_{1}, \ldots, c_{n}\right)$ is $0 \bmod 4: \bmod 4(\widehat{X})=|X|_{4}$
- $-P<X<P$ in PM-RNS, so if $P \leqslant C<\left(1-\operatorname{err}_{\max }\right) M-P$ then $0 \leqslant \widehat{X}<\left(1-\right.$ err $\left._{\max }\right) M$
- the factor $\left(M_{1}^{-1}, \ldots, M_{n}^{-1}\right)$ is included and done once for the computation of q and s
Remark: $\operatorname{div} 2 \mathrm{r}$ is designed to handle properly \widehat{X}, i.e. it returns the hat representation of the expected output (for instance $\widehat{\left(\frac{X+P}{4}\right)}$)

Cost of the Proposed Algorithm

Our proposition:

- On average, $0.71 \log _{2} P$ main loop iterations
- PM-RNS works without base extension
- Total average complexity: $O\left(\log _{2} P \times n\right)$

Example: for 192 bits (number of w-bit modular multiplications):

$n \times w$	FLT-RNS	PM-RNS	Gain Factor
12×17	103140	5474	18
9×22	61884	4106	15
7×29	40110	3193	12

Remark: state-of-art FLT-RNS complexity is $O\left(\log _{2} P \times n^{2}\right)$ multiplications of w-bit words

Hardware Implementations and Comparisons

PM-RNS and FLT-RNS have been fully implemented:

- using the same CAD tools (ISE 12.4)
- on Virtex 5 FPGAs
- with the same synthesis options and efforts
- and have an optimized implementation (for fair comparison)

For both algorithms, 2 field sizes have been implemented:

- 192 bits
- 384 bits

For each size, 3 couples (n, w) have been implemented

Timing Implementation Comparison

Virtex 5 results with DSP blocks and BRAMs, with $w \in\{17,22,29\}$ for 192 bits and $w \in\{22,29,33\}$ for 384 bits:

192 bits

384 bits

Area Implementation Results Comparison

Conclusion

Our proposition:

- is about 6-8 times faster than the best state-of-art solution
- with a small area overhead on RNS operator for ECC
- full FPGA optimization and fair comparison

Future works on hardware implementation:

- improve FPGA implementation of the new inversion
- integration in a complete ECC processor in RNS
- implementation of randomization for a scalar multiplication
- study speed vs. area trade-offs

Thank you for your attention

We thank the anonymous reviewers, Thomas Chabrier, Jérémy Métairie and Nicolas Guillermin for their valuable comments. This work has been supported in part by a PhD grant from DGA-INRIA and by the PAVOIS project (ANR 12 BS02 002 01).

References I

[1] R. P. Brent and H. T. Kung.
Systolic VLSI arrays for polynomial GCD computation.
IEEE Transactions on Computers, C-33(8):731-736, August 1984.
[2] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi.
An algorithmic and architectural study on montgomery exponentiation in RNS.
IEEE Transactions on Computers, 61(8):1071-1083, August 2012.
[3] H. L. Garner.
The residue number system.
IRE Transactions on Electronic Computers, EC-8(2):140-147, June 1959.
[4] N. Guillermin.
A high speed coprocessor for elliptic curve scalar multiplications over \mathbb{F}_{p}.
In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 6225 of LNCS, pages 48-64, Santa Barbara, CA, USA, August 2010. Springer.
[5] S. Kawamura, M. Koike, F. Sano, and A. Shimbo.
Cox-rower architecture for fast parallel montgomery multiplication.
In Proc. 19th International Conference on the Theory and Application of Cryptographic (EUROCRYPT), volume 1807 of LNCS, pages 523-538, Bruges, Belgium, May 2000. Springer.

References II

[6] D. E. Knuth.
Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 3rd edition, 1997.
[7] K. C. Posch and R. Posch.
Modulo reduction in residue number systems.
IEEE Transactions on Parallel and Distributed Systems, 6(5):449-454, May 1995.
[8] A. Svoboda and M. Valach.
Operátorové obvody (operator circuits in czech).
Stroje na Zpracování Informací (Information Processing Machines), 3:247-296, 1955.
[9] N. S. Szabo and R. I. Tanaka.
Residue arithmetic and its applications to computer technology.
McGraw-Hill, 1967.

Costs of RNS Modular Operations

$X, Y, P: n$ words of w bits
Elementary operations: mult. $=w$-bit multiplication

Operation	RNS (mult.)	Standard (mult.)
$X Y$	$2 n$	n^{2}
$X \bmod P$	$2 n^{2}+4 n$	$n^{2}+n$
$X Y \bmod P$	$2 n^{2}+6 n$	$2 n^{2}+n$
$\left(X_{1} Y_{1}+X_{2} Y_{2}\right) \bmod P$	$2 n^{2}+8 n$	$3 n^{2}+n$
$\left(\sum_{i=1}^{k} X_{i} Y_{i}\right) \bmod P$	$2 n^{2}+(4+2 k) n$	$(1+k) n^{2}+n$

Factor 2 in RNS $X Y$ is due to the use of 2 bases and BEs

Cost of Inner Loop Operations

For each main loop iteration:

- the inner loop has on average $\frac{2}{3}$ iterations
- RNS \times and div2r cost $n w$-bit modular multiplications
- RNS,+- cost n modular w-bit additions
- $\bmod 4$ requires n additions of t-bit values and $n+1$ modulo 4 additions

Note: t is the number of truncated bits in q approximation

Implementation of FLT-RNS

Our FLT-RNS implementation:

- is based on the state-of-art one [4] (with the original Cox)
- uses state-of-art Gandino's algorithm [2] to perform RNS exponentiation
- has a better pipeline filling than state-of-art one [4] (control dedicated to the inversion here)

Operations Count

Algo.	ℓ	$n \times w$	w-bit EMM	w-bit EMA	cox-add	mod4-add
FLT-RNS	192	12×17	103140	85950	6876	0
		9×22	61884	48991	5157	0
		7×29	40110	30083	4011	0
	384	18×22	434322	382617	20682	0
		14×29	273462	233247	16086	0
		12×33	206820	172350	13788	0
FLT-RNSNIST	192	12×17	137520	114600	9168	0
		9×22	85512	65322	6876	0
		7×29	53480	40110	5348	0
	384	18×22	579096	510156	27576	0
		14×29	364616	310996	21448	0
		12×33	275760	229800	18384	0
PM-RNS	192	12×17	5474	8750	5474	5930
		9×22	4106	6562	4106	4562
		7×29	3193	5104	3193	3650
	384	18×22	16487	26376	16487	17402
		14×29	12823	20514	12823	13738
		12×33	10991	17584	10991	11907

FPGA Implementation Results with Dedicated Hard Blocks

Algo.	ℓ	$n \times w$	Area			Freq. MHz	Number of cycles	$\begin{gathered} \text { Duration } \\ \mu \mathrm{s} \end{gathered}$
			slices (FF/LUT)	DSP	BRAM			
FLT-RNS	192	12×17	2473 (2995/7393)	26	0	186	13416	72.1
		9×22	2426 (3001/7150)	29	0	185	11272	60.9
		7×29	2430 (3182/6829)	48	0	107	9676	90.4
	384	18×22	4782 (5920/14043)	56	0	178	34359	193.0
		14×29	5554 (5910/16493)	98	14	110	28416	258.3
		12×33	5236 (5710/15418)	84	12	107	25911	242.1
PM-RNS	192	12×17	2332 (3371/6979)	26	0	187	1753	9.3
		9×22	2223 (3217/6706)	29	0	187	1753	9.3
		7×29	2265 (3336/6457)	48	0	120	1753	14.6
	384	18×22	4064 (5932/13600)	56	0	152	3518	23.1
		14×29	4873 (6134/14347)	98	14	102	3518	34.4
		12×33	4400 (5694/12764)	84	24	103	3518	34.1

FPGA Implementation Results without Dedicated Hard Blocks

Algo.	ℓ	$n \times w$	Area			$\begin{array}{\|l\|l} & \text { Freq. } \\ \hline \mathrm{MHz} \end{array}$	Number of cycles	$\begin{array}{\|c\|} \hline \text { Duration } \\ \mu \mathrm{s} \end{array}$
			slices (FF/LUT)	DSP	BRAM			
FLT-RNS	192	12×17	4071 (4043/12864)	4	0	128	13416	104.8
		9×22	4155 (3816/13313)	4	0	122	11272	92.3
		7×29	4575 (3952/15264)	0	0	126	9676	76.7
	384	18×22	7559 (7831/27457)	0	0	163	34359	210.7
		14×29	9393 (7818/30536)	0	0	126	28416	225.5
		12×33	9888 (7640/31599)	0	0	107	25911	242.1
PM-RNS	192	12×17	3899 (4212/12519)	4	0	150	1753	11.6
		9×22	3809 (3986/12782)	4	0	146	1753	12.0
		7×29	4341 (4107/14981)	0	0	141	1753	12.4
	384	18×22	7677 (8053/128306)	0	0	168	3518	20.9
		14×29	9119(8113/30619)	0	0	127	3518	27.7
		12×33	9780 (7908/31902)	0	0	108	3518	32.5

