Single Base Modular Multiplication for Efficient Hardware RNS Implementations of ECC

#### Karim Bigou and Arnaud Tisserand

CNRS, IRISA, INRIA Centre Rennes - Bretagne Atlantique and Univ. Rennes 1

CHES 2015, Sept. 13 - 16



SBMM Modular Multiplication

Design efficient hardware implementations of asymmetric cryptosystems using fast arithmetic techniques:

- RSA [RSA78]
- Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH), ElGamal [Elg85]
- Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The **residue number system** (RNS) is a representation which enables fast computations for cryptosystems requiring large integers or  $\mathbb{F}_P$  elements

## Residue Number System (RNS) [SV55] [Gar59]

X a large integer of  $\ell$  bits ( $\ell \approx$  160–4096) is represented by:

 $\overrightarrow{X} = (x_1, \ldots, x_n) = (X \mod m_1, \ldots, X \mod m_n)$ 

RNS base  $\mathcal{B} = (m_1, \dots, m_n)$ , *n* pairwise co-primes of *w* bits,  $n \times w \ge \ell$ 



RNS relies on the Chinese remainder theorem (CRT)

EMM = w-bit elementary modular multiplication in one channel

### **RNS** Properties

Pros:

- Carry free between channels
  - each channel is independant
- Fast parallel  $+, -, \times$  and some exact divisions
  - computations over all channels can be performed in parallel
  - an RNS multiplication requires *n* EMMs
- Flexibility for hardware implementations
  - the number of hardware channels and logical channels can be different
  - various area/time trade-offs and multi-size support
- Non-positional number system
  - randomization of internal computations (SCA countermeasures)

Cons:

- Non-positional number system
  - comparison, modular reduction and division are much harder
  - modular reduction : RNS version of Montgomery reduction MR

#### Montgomery and Pseudo-Mersenne Reductions in RNS

Classical binary positional representation:

- in practice, standards use special primes to perform faster reduction: the pseudo-Mersenne primes
- $P = 2^{\ell} c$  where  $c < 2^{\ell/2}$  has a small Hamming weight: fast reduction using  $2^{\ell} \equiv c \mod P$

In RNS, no equivalent to pseudo-Mersenne number in state-of-the-art Approaches in RNS literature to speed up modular arithmetic:

- reduce the number of MR (e.g. [BDE13, BT13]):
  - for instance computing pattern of the form  $AB + CD \mod P$
- improves MR in specific context (*e.g.* [Gui10, GLP<sup>+</sup>12, BT14]):
  - for example RSA or ECC
- choose carefully some parameters of the representation to reduce the internal computation cost of MRs [BKP09, BM14, YFCV14]

## RNS Montgomery Reduction (MR) [PP95]



where  $M = \prod_{i=1}^{n} m_i$ 

BE : base extension (*i.e.* conversion)

MR cost:  $2n^2 + O(n)$  EMMs

Note: MM = 1 RNS mult. + MR

#### Size of Elements Using MM



## A New RNS Modular Multiplication

#### First Step: Changing the Representation

We split field elements in 2 parts of the same size

How?  
• using half-bases : 
$$\mathcal{B} = \mathcal{B}_{a|b}$$
  $\overbrace{n/2 \times w}^{\mathcal{B}_a}$   $n \times w = \ell$ 

Using 
$$M_a = \prod_{i=1}^{n_a} m_{a,i}$$
, we split  $\overrightarrow{X}$  into  $(\overrightarrow{K_x}, \overrightarrow{R_x})$  such that:  
 $\overrightarrow{X} = \overrightarrow{K_x} \overrightarrow{M_a} + \overrightarrow{R_x}$ 

 $K_x$  and  $R_x$  are  $\ell/2$  bits long

 $\mathbb{F}_P$  elements are now represented by (K, R): we add a little positional information

We call Split the function to get  $(\overrightarrow{K_x}, \overrightarrow{R_x})$  from  $\overrightarrow{X}$ 

#### Decomposition with Split Algorithm

Input: 
$$\overrightarrow{X_{a|b}}$$
  
Precomp.:  $(\overrightarrow{M_a^{-1}})_b$   
Output:  $(\overrightarrow{K_x})_{a|b}$ ,  $(\overrightarrow{R_x})_{a|b}$  with  $\overrightarrow{X_{a|b}} = (\overrightarrow{K_x})_{a|b} \times (\overrightarrow{M_a})_{a|b} + (\overrightarrow{R_x})_{a|b}$   
 $(\overrightarrow{R_x})_b \leftarrow (\overrightarrow{K_x})_a, \mathcal{B}_a, \mathcal{B}_b)$   $(\frac{n}{2} \times \frac{n}{2})$  EMMs  
 $(\overrightarrow{K_x})_b \leftarrow (\overrightarrow{X_b} - (\overrightarrow{R_x})_b) \times (\overrightarrow{M_a^{-1}})_b$   
if  $(\overrightarrow{K_x})_b \leftarrow (\overrightarrow{R_x})_b - (\overrightarrow{M_a})_b$   
 $(\overrightarrow{K_x})_b \leftarrow (\overrightarrow{R_x})_b - (\overrightarrow{M_a})_b$   
 $(\overrightarrow{K_x})_a \leftarrow (\overrightarrow{BE}) ((\overrightarrow{K_x})_b, \mathcal{B}_b, \mathcal{B}_a)$   $(\frac{n}{2} \times \frac{n}{2})$  EMMs  
return  $(\overrightarrow{K_x})_{a|b}$ ,  $(\overrightarrow{R_x})_{a|b}$ 

Note: the cost of Split is dominated by the 2 BEs on half bases :

$$\frac{n^2}{2} + O(n)$$
 when  $n_a = n_b = n/2$ 

#### A New Choice for P

Second step: we propose the form  $P = M_a^2 - c$  with P prime and c small

Some remarks

- $P = M_a^2 1$  is never prime
- in practice, we choose  $P = M_a^2 2$  with  $M_a$  odd *i.e.*  $M_a^2 \equiv 2 \mod P$
- One can find a lot of *P* for a given size (probabilistic primality tests using isprime from Maple, for instance generating 10 000 *P* of 512 bits in 15 s)
- *P* is an equivalent for RNS to pseudo-Mersenne numbers for the radix 2 standard representation (for instance  $P = 2^{521} 1$ )

Our Single Base Modular Multiplication **SBMM** combines:

- $P = M_a^2 2$
- $(K_x, R_x)$  representation
- Split function

**Parameters:**  $\mathcal{B}_a$  such that  $M_a^2 = P + 2$  and  $\mathcal{B}_b$  such that  $M_b > 6M_a$  **Input:**  $(K_x)_{a|b}$ ,  $(R_x)_{a|b}$ ,  $(K_y)_{a|b}$ ,  $(R_y)_{a|b}$  with  $K_x$ ,  $R_x$ ,  $K_y$ ,  $R_y < M_a$  **Output:**  $(K_z)_{a|b}$ ,  $(R_z)_{a|b}$  with  $K_z < 5M_a$  and  $R_z < 6M_a$  $\overrightarrow{U_{a|b}} \leftarrow \overrightarrow{2K_xK_y + R_xR_y}$  $V_{a|b} \leftarrow K_x R_y + R_x K_y$  $\begin{pmatrix} \overrightarrow{(K_u)_{a|b}}, \overrightarrow{(R_u)_{a|b}} \end{pmatrix} \leftarrow \texttt{Split}(\overrightarrow{U_{a|b}}) \\ \begin{pmatrix} \overrightarrow{(K_v)_{a|b}}, \overrightarrow{(R_v)_{a|b}} \end{pmatrix} \leftarrow \texttt{Split}(\overrightarrow{V_{a|b}}) \\ \end{pmatrix}$ } in parallel  $(\overrightarrow{(K_z)_{a|b}}, \overrightarrow{(R_z)_{a|b}}) \leftarrow (\overrightarrow{(K_u + R_v)_{a|b}}, \overrightarrow{(2 \cdot K_v + R_u)_{a|b}})$ return  $(\overrightarrow{(K_z)_{a|b}}, \overrightarrow{(R_z)_{a|b}})$ 

#### SBMM Principle 1/2



#### SBMM Principle 2/2

 $XY \equiv U + VM_a \equiv (K_u + R_v)M_a + (R_u + 2K_v) \equiv K_z M_a + R_z \mod P$ 



#### SBMM Architecture with n/2 Rowers



Karim Bigou and Arnaud Tisserand

### Cost of the Algorithms

The output of the algorithm has a few additional bits compared to inputs:

• we use a small extra modulo  $m_{\gamma}$  to handle them

$$ullet$$
 in practice  $m_\gamma=2^6$  can be chosen

| Algo.        | MM [GLP+12]  | SBMM                 | $\mathtt{SBMM}+\mathtt{Compress}$ |
|--------------|--------------|----------------------|-----------------------------------|
| EMM          | $2n^2 + 4n$  | $n^2 + 5n$           | $(n^2 + 7n)$ EMM + $(n + 2)$ GMM  |
| Precomp. EMW | $2n^2 + 10n$ | $\frac{n^2}{2} + 3n$ | $\frac{n^2}{2} + 4n + 2$          |

EMM is a *w*-bit modular multiplication GMM is a one multiplication modulo  $m_{\gamma}$  (6 bits in practice) EMW is a *w*-bit word stored as a precomputation

**SBMM** is the first RNS modular multiplication algorithm on a single base (two half-bases = n moduli)

FPGA implementations:

- MM and SBMM have been implemented
- *n* **Rowers** (=HW channels) for MM and n/2 Rowers for SBMM
  - MM architecture very close to the one in [Gui10]
- 3 field lengths implemented: 192, 384 and 512 bits
- w = 16 bits for 192 and 32 for 384 and 512
- on various FPGAs
  - high performance Virtex 5 (LX220)
  - low cost Spartan 6 (LX45/LX100)
  - recent mid-range Kintex 7 (70T)
- 2 configurations: with and without DSP blocks

#### FPGA Implementation Results (1/2)

Reduction in Slices compared to MM: mainly around 40%



Reduction in DSP blocks 50% for most values

Timing results for a single modular multiplication with (bottom) and without (top) DSP blocks



Timing overhead always less than 10%

#### Conclusion

#### Theoretical conclusions:

- only 1 base : # moduli / 2
- <u># EMMs / 2</u>
- # precomputations / 4
- It works only for special primes *P* (it is the same for standard primes)

#### Implementation conclusions:

- the area is almost divided by 2 for a small time overhead (< 10%)
- the architecture is still flexible

Further implementation works:

- faster architecture for SBMM (factor 2 expected)
- integration in a full RNS ECC cryptosystem
- compatibility with the countermeasures based on RNS

SBMM Modular Multiplication

## Thank you for your attention

#### References I

- [BDE13] J.-C. Bajard, S. Duquesne, and M. D. Ercegovac. Combining leak-resistant arithmetic for elliptic curves defined over Fp and RNS representation. *Publications Mathématiques UFR Sciences Techniques Besançon*, pages 67–87, 2013.
   [BKP09] J.-C. Bajard, M. Kaihara, and T. Plantard.
- Selected RNS bases for modular multiplication. In Proc. 19th Symposium on Computer Arithmetic (ARITH), pages 25–32. IEEE, June 2009.
- [BM14] J.-C. Bajard and N. Merkiche. Double level Montgomery Cox-Rower architecture, new bounds. In Proc. 13th Smart Card Research and Advanced Application Conference (CARDIS), LNCS. Springer, November 2014.
- [BT13] K. Bigou and A. Tisserand. Improving modular inversion in RNS using the plus-minus method. In Proc. 15th Cryptographic Hardware and Embedded Systems (CHES), volume 8086 of LNCS, pages 233–249. Springer, August 2013.
- [BT14] K. Bigou and A. Tisserand. RNS modular multiplication through reduced base extensions. In Proc. 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 57–62. IEEE, June 2014.

[DH76] W Diffie and M F Hellman New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644–654, November 1976. [Elg85] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472, July 1985. H. L. Garner. [Gar59] The residue number system. IRE Transactions on Electronic Computers, EC-8(2):140-147, June 1959. [GLP+12] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi. An algorithmic and architectural study on Montgomery exponentiation in RNS. IEEE Transactions on Computers, 61(8):1071–1083, August 2012. [Gui10] N. Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over  $\mathbb{F}_p$ . In Proc. 12th Cryptographic Hardware and Embedded Systems (CHES), volume

6225 of LNCS, pages 48-64. Springer, August 2010.

#### References III

[JY02] M. Joye and S.-M. Yen.

The Montgomery powering ladder.

In Proc. 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of LNCS, pages 291–302. Springer, August 2002.

[KKSS00] S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-Rower architecture for fast parallel Montgomery multiplication. In Proc. 19th International Conference on the Theory and Application of Cryptographic (EUROCRYPT), volume 1807 of LNCS, pages 523–538. Springer, May 2000.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–209, 1987.

[Mil85] V. Miller. Use of elliptic curves in cryptography. In Proc. 5th International Cryptology Conference (CRYPTO), volume 218 of LNCS, pages 417–426. Springer, 1985.

[PP95] K. C. Posch and R. Posch. Modulo reduction in residue number systems. IEEE Transactions on Parallel and Distributed Systems, 6(5):449–454, May 1995.

- [RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, February 1978.
- [SV55] A. Svoboda and M. Valach. Operátorové obvody (operator circuits in czech). Stroje na Zpracování Informací (Information Processing Machines), 3:247–296, 1955.
- [YFCV14] G. Yao, J. Fan, R. Cheung, and I. Verbauwhede. Novel RNS parameter selection for fast modular multiplication. IEEE Transactions on Computers, 63(8):2099–2105, Aug 2014.

## FPGA Implementation Results of State-of-Art MM and SBMM Algorithms with DSP Blocks and BRAMs

| Algo. | FPGA | $\ell$ | Slices(FF/LUT)   | DSP/BRAM | #cycles | Freq.(MHz) | time(ns) |
|-------|------|--------|------------------|----------|---------|------------|----------|
| MM    | S6   | 192    | 1733(2780/5149)  | 36/0     | 50      | 140        | 357      |
| MM    | S6   | 384    | 3668(6267/11748) | 58/0     | 50      | 71         | 704      |
| MM    | S6   | 512    | 5457(8617/18366) | 58/0     | 58      | 70         | 828      |
| SBMM  | S6   | 192    | 1214(1908/3674)  | 18/0     | 58      | 154        | 376      |
| SBMM  | S6   | 384    | 2213(3887/6709)  | 41/0     | 58      | 78         | 743      |
| SBMM  | S6   | 512    | 2912(5074/8746)  | 56/0     | 66      | 76         | 868      |
| MM    | V5   | 192    | 1941(2957/6053)  | 26/0     | 50      | 184        | 271      |
| MM    | V5   | 384    | 3304(5692/10455) | 84/12    | 50      | 118        | 423      |
| MM    | V5   | 512    | 6180(7557/15240) | 112/16   | 58      | 116        | 500      |
| SBMM  | V5   | 192    | 1447(1973/4682)  | 15/0     | 58      | 196        | 295      |
| SBMM  | V5   | 384    | 2256(3818/8415)  | 42/6     | 58      | 124        | 467      |
| SBMM  | V5   | 512    | 3400(4960/10877) | 57/8     | 66      | 123        | 536      |
| MM    | K7   | 192    | 1732(2759/5075)  | 36/0     | 50      | 260        | 192      |
| MM    | K7   | 384    | 3278(5884/9841)  | 84/0     | 50      | 171        | 292      |
| MM    | K7   | 512    | 4186(7814/13021) | 112/0    | 58      | 170        | 341      |
| SBMM  | K7   | 192    | 999(1867/3599)   | 18/0     | 58      | 272        | 213      |
| SBMM  | K7   | 384    | 2111(3889/6691)  | 41/0     | 58      | 179        | 324      |
| SBMM  | K7   | 512    | 3104(5076/8757)  | 56/0     | 66      | 176        | 375      |

## FPGA Implementation Results of State-of-Art MM and SBMM Algorithms without DSP Blocks and BRAMs

| Algo. | FPGA | l   | Slices(FF/LUT)     | #cycles | Freq.(MHz) | time(ns) |
|-------|------|-----|--------------------|---------|------------|----------|
| MM    | S6   | 192 | 3238(4288/10525)   | 50      | 114        | 438      |
| MM    | S6*  | 384 | 7968(8868/27323)   | 50      | 70         | 714      |
| MM    | S6*  | 512 | 10381(11750/35751) | 58      | 45         | 1288     |
| SBMM  | S6   | 192 | 1793(2539/6085)    | 58      | 142        | 408      |
| SBMM  | S6*  | 384 | 4577(5302/15160)   | 58      | 91         | 637      |
| SBMM  | S6*  | 512 | 6163(6875/20147)   | 66      | 90         | 733      |
| MM    | V5   | 192 | 3358(3991/11136)   | 50      | 126        | 396      |
| MM    | V5   | 384 | 8675(7624/29719)   | 50      | 109        | 458      |
| MM    | V5   | 512 | 11401(10109/39257) | 58      | 106        | 547      |
| SBMM  | V5   | 192 | 1980(2444/6888)    | 58      | 147        | 394      |
| SBMM  | V5   | 384 | 4942(4696/16672)   | 58      | 125        | 464      |
| SBMM  | V5   | 512 | 6466(6186/22411)   | 66      | 122        | 540      |
| MM    | K7   | 192 | 3109(4060/10568)   | 50      | 200        | 250      |
| MM    | K7   | 384 | 7241(7631/27377)   | 50      | 140        | 357      |
| MM    | K7   | 512 | 9202(10102/35696)  | 58      | 132        | 439      |
| SBMM  | K7   | 192 | 1999(2494/6368)    | 58      | 231        | 251      |
| SBMM  | K7   | 384 | 4208(4649/15137)   | 58      | 162        | 358      |
| SBMM  | K7   | 512 | 4922(6146/19269)   | 66      | 152        | 434      |

# Formulas for $y^2 = x^3 + ax + b$ with RNS optimizations [BDE13] and (X, Z) coordinates [JY02]

| Point Operation | $P_1+P_2$ (ADD)           | 2 <b>P</b> <sub>1</sub> (DBL) |  |
|-----------------|---------------------------|-------------------------------|--|
|                 | $A = Z_1 X_2 + Z_2 X_1$   | $E = Z_1^2$                   |  |
| Formulas        | $B=2X_1X_2$               | $F=2X_1Z_1$                   |  |
|                 | $C=2Z_1Z_2$               | $G = X_1^2$                   |  |
|                 | D = aA + bC               | H = -4bE                      |  |
|                 | $Z_3 = A^2 - BC$          | I = aE                        |  |
|                 | $X_3 = BA + CD + 2X_GZ_3$ | $X_3 = FH + (G - I)^2$        |  |
|                 |                           | $Z_3 = 2F(G+I) - EH$          |  |

#### Parallel Execution Flow Using SBMM and Compress



Input:  $\overrightarrow{K_{a|b|m_{\gamma}}}$  and  $\overrightarrow{R_{a|b|m_{\gamma}}}$  with  $K, R < (m_{\gamma} - 1)M_a$ **Precomp.**:  $|M_a^{-1}|_{m_{\gamma}}$  **Output**:  $(K_c)_{a|b|m_{\gamma}}$ ,  $(R_c)_{a|b|m_{\gamma}}$  with  $K_c < 3M_a$  and  $R_c < 3M_a$  $/* (\overrightarrow{R_k})_{2} = \overrightarrow{K_2} * /$  $|R_k|_{m_{\gamma}} \leftarrow \operatorname{BE}\left(\overrightarrow{K_a}, \mathcal{B}_a, m_{\gamma}\right)$  $K_k \leftarrow \left| (K - R_k) M_a^{-1} \right|_{m_\gamma}$  $\overrightarrow{(R_k)_b} \leftarrow \overrightarrow{K_b} - \overrightarrow{(K_k)_b} \times \overrightarrow{(M_s)_b}$  $|R_r|_{m_{\gamma}} \leftarrow \operatorname{BE}\left(\overrightarrow{R_a}, \mathcal{B}_a, m_{\gamma}\right)$  $/* (\overrightarrow{R_r})_{2} = \overrightarrow{R_2} * /$  $\frac{K_r \leftarrow \left| (R - R_r) M_a^{-1} \right|_{m_{\gamma}}}{(R_r)_b} \leftarrow \overrightarrow{R_b} - \overrightarrow{(K_r)_b} \times (\overrightarrow{M_a)_b} \\
\overrightarrow{(R_r + R_k)_{a|b|m_{\gamma}}}, (\overrightarrow{R_r + 2K_k)_{a|b|m_{\gamma}}}$