Single Base Modular Multiplication for Efficient Hardware RNS Implementations of ECC

Karim Bigou and Arnaud Tisserand

CNRS, IRISA, INRIA Centre Rennes - Bretagne Atlantique and Univ. Rennes 1
CHES 2015, Sept. 13 - 16

Context

Design efficient hardware implementations of asymmetric cryptosystems using fast arithmetic techniques:

- RSA [RSA78]
- Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH), ElGamal [Elg85]
- Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The residue number system (RNS) is a representation which enables fast computations for cryptosystems requiring large integers or \mathbb{F}_{P} elements

Residue Number System (RNS) [SV55] [Gar59]

X a large integer of ℓ bits $(\ell \approx 160-4096)$ is represented by:
$\vec{X}=\left(x_{1}, \ldots, x_{n}\right)=\left(X \bmod m_{1}, \ldots, X \bmod m_{n}\right)$
RNS base $\mathcal{B}=\left(m_{1}, \ldots, m_{n}\right)$, n pairwise co-primes of w bits, $n \times w \geqslant \ell$

RNS relies on the Chinese remainder theorem (CRT)
EMM $=w$-bit elementary modular multiplication in one channel

RNS Properties

Pros:

- Carry free between channels
- each channel is independant
- Fast parallel,,$+- \times$ and some exact divisions
- computations over all channels can be performed in parallel
- an RNS multiplication requires n EMMs
- Flexibility for hardware implementations
- the number of hardware channels and logical channels can be different
- various area/time trade-offs and multi-size support
- Non-positional number system
- randomization of internal computations (SCA countermeasures)

Cons:

- Non-positional number system
- comparison, modular reduction and division are much harder
- modular reduction: RNS version of Montgomery reduction MR

Montgomery and Pseudo-Mersenne Reductions in RNS

Classical binary positional representation:

- in practice, standards use special primes to perform faster reduction: the pseudo-Mersenne primes
- $P=2^{\ell}-c$ where $c<2^{\ell / 2}$ has a small Hamming weight: fast reduction using $2^{\ell} \equiv c \bmod P$

In RNS, no equivalent to pseudo-Mersenne number in state-of-the-art
Approaches in RNS literature to speed up modular arithmetic:

- reduce the number of MR (e.g. [BDE13, BT13]):
- for instance computing pattern of the form $A B+C D \bmod P$
- improves MR in specific context (e.g. [Gui10, GLP ${ }^{+} 12$, BT14]):
- for example RSA or ECC
- choose carefully some parameters of the representation to reduce the internal computation cost of MRs [BKP09, BM14, YFCV14]

RNS Montgomery Reduction (MR) [PP95]

Input: $\vec{X}, \vec{X}^{\prime}$ with $X<\alpha P^{2}<P M$ and $2 P<M^{\prime}$ Output: $\left(\vec{\omega}, \vec{\omega}^{\prime}\right)$ with $\omega \equiv X \times M^{-1} \bmod P$

$$
0 \leqslant \omega<2 P
$$

(in base \mathcal{B})
(in base \mathcal{B}^{\prime})
(in base \mathcal{B}^{\prime})
\mathcal{B} \mathcal{B}^{\prime}
\times

where $M=\prod_{i=1}^{n} m_{i}$
BE : base extension (i.e. conversion)
MR cost: $2 n^{2}+O(n)$ EMMs
Note: $\mathrm{MM}=1$ RNS mult. +MR

Size of Elements Using MM

A New RNS Modular Multiplication

First Step: Changing the Representation

We split field elements in 2 parts of the same size
How?

- using half-bases: $\mathcal{B}=\mathcal{B}_{a \mid}$

Using $M_{a}=\prod_{i=1}^{n_{a}} m_{a, i}$, we split \vec{X} into $\left(\overrightarrow{K_{x}}, \overrightarrow{R_{x}}\right)$ such that:

$$
\vec{X}=\overrightarrow{K_{x}} \overrightarrow{M_{a}}+\overrightarrow{R_{x}}
$$

K_{x} and R_{x} are $\ell / 2$ bits long
\mathbb{F}_{P} elements are now represented by (K, R) : we add a little positional information
We call Split the function to get $\left(\overrightarrow{K_{x}}, \overrightarrow{R_{x}}\right)$ from \vec{X}

Decomposition with Split Algorithm

Input: $\overrightarrow{X_{a \mid b}}$
Precomp.: $\overrightarrow{\left(M_{a}^{-1}\right)_{b}}$
Output: $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}$ with $\overrightarrow{X_{a \mid b}}=\overrightarrow{\left(K_{x}\right)_{a \mid b}} \times \overrightarrow{\left(M_{a}\right)_{a \mid b}}+\overrightarrow{\left(R_{x}\right)_{a \mid b}}$
$\overrightarrow{\left(R_{x}\right)_{b}} \leftarrow \operatorname{BE}\left(\overrightarrow{\left(R_{x}\right)_{a}}, \mathcal{B}_{a}, \mathcal{B}_{b}\right) \quad\left(\frac{n}{2} \times \frac{n}{2}\right)$ EMMS
$\overrightarrow{\left(K_{x}\right)_{b}} \leftarrow\left(\overrightarrow{X_{b}}-\overrightarrow{\left(R_{x}\right)_{b}}\right) \times \overrightarrow{\left(M_{a}^{-1}\right)_{b}}$
if $\xrightarrow{\left(K_{x}\right)_{b}}=\overrightarrow{-1}$ then
$\xrightarrow[\left(R_{x}\right)_{b}]{\overrightarrow{\left(K_{x}\right)_{b}}} \leftarrow \overrightarrow{\left(R_{x}\right)_{b}}-\overrightarrow{\left(M_{a}\right)_{b}} \quad{ }^{*}$ with Kawamura BE correction [KKSSOO] */
$\overrightarrow{\left(K_{x}\right)_{a}} \leftarrow \operatorname{BE}\left(\underset{\left(K_{x}\right)_{b}}{ }, \mathcal{B}_{b}, \mathcal{B}_{a}\right) \quad\left(\frac{n}{2} \times \frac{n}{2}\right)$ EMMS
return $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}$
Note: the cost of Split is dominated by the 2 BEs on half bases :

$$
\frac{n^{2}}{2}+O(n) \text { when } n_{a}=n_{b}=n / 2
$$

A New Choice for P

Second step: we propose the form $P=M_{a}^{2}-c$ with P prime and c small Some remarks

- $P=M_{a}^{2}-1$ is never prime
- in practice, we choose $P=M_{a}^{2}-2$ with M_{a} odd i.e. $M_{a}^{2} \equiv 2 \bmod P$
- One can find a lot of P for a given size (probabilistic primality tests using isprime from Maple, for instance generating $10000 P$ of 512 bits in 15 s)
- P is an equivalent for RNS to pseudo-Mersenne numbers for the radix 2 standard representation (for instance $P=2^{521}-1$)

Our Single Base Modular Multiplication SBMM combines:

- $P=M_{a}^{2}-2$
- $\left(K_{x}, R_{x}\right)$ representation
- Split function

SBMM Algorithm

Parameters: \mathcal{B}_{a} such that $M_{a}^{2}=P+2$ and \mathcal{B}_{b} such that $M_{b}>6 M_{a}$ Input: $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}, \overrightarrow{\left(K_{y}\right)_{a \mid b}}, \overrightarrow{\left(R_{y}\right)_{a \mid b}}$ with $K_{x}, R_{x}, K_{y}, R_{y}<M_{a}$ Output: $\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}$ with $K_{z}<5 M_{a}$ and $R_{z}<6 M_{a}$
$\overrightarrow{U_{a \mid b}} \leftarrow \overrightarrow{2 K_{x} K_{y}+R_{x} R_{y}}$
$\overrightarrow{V_{a \mid b}} \leftarrow \overrightarrow{K_{x} R_{y}+R_{x} K_{y}}$
$\left(\overrightarrow{\left(K_{u}\right)_{a \mid b}}, \overrightarrow{\left(R_{u}\right)_{a \mid b}}\right) \leftarrow \operatorname{Split}\left(\overrightarrow{U_{a \mid b}}\right)$
$\left(\overrightarrow{\left(K_{v}\right)_{a \mid b}}, \overrightarrow{\left(R_{v}\right)_{a \mid b}}\right) \leftarrow \operatorname{Split}\left(\overrightarrow{V_{a \mid b}}\right)$
$\}$ in parallel
$\left(\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}\right) \leftarrow\left(\overrightarrow{\left(K_{u}+R_{v}\right)_{a \mid b}}, \overrightarrow{\left(2 \cdot K_{v}+R_{u}\right)_{a \mid b}}\right)$ return $\left(\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}\right)$

SBMM Principle $1 / 2$

$\times \times \times \times \times \times 2 n$ EMMs
$Y: R_{y} \square \mid \square K_{y} \square \square$

$$
X Y \equiv 2 K_{x} K_{y}+\left(K_{x} R_{y}+K_{y} R_{x}\right) M_{a}+R_{x} R_{y} \equiv U+V M_{a} \bmod P
$$

SBMM Principle 2/2

$$
X Y \equiv U+V M_{a} \equiv\left(K_{u}+R_{v}\right) M_{a}+\left(R_{u}+2 K_{v}\right) \equiv K_{z} M_{a}+R_{z} \bmod P
$$

SBMM Architecture with $n / 2$ Rowers

Cost of the Algorithms

The output of the algorithm has a few additional bits compared to inputs:

- we use a small extra modulo m_{γ} to handle them
- in practice $m_{\gamma}=2^{6}$ can be chosen

Algo.	MM $\left[\mathrm{GLP}^{+} 12\right]$	SBMM	SBMM + Compress
EMM	$2 \mathrm{n}^{2}+4 n$	$\mathbf{n}^{2}+5 n$	$\left(\mathrm{n}^{2}+7 n\right)$ EMM $+(n+2)$ GMM
Precomp. EMW	$2 n^{2}+10 n$	$\frac{\mathbf{n}^{2}}{2}+3 n$	$\frac{\mathbf{n}^{2}}{2}+4 n+2$

EMM is a w-bit modular multiplication
GMM is a one multiplication modulo m_{γ} (6 bits in practice)
EMW is a w-bit word stored as a precomputation
SBMM is the first RNS modular multiplication algorithm on a single base (two half-bases $=n$ moduli)

Implementations

FPGA implementations:

- MM and SBMM have been implemented
- n Rowers (=HW channels) for MM and $n / 2$ Rowers for SBMM
- MM architecture very close to the one in [Gui10]
- 3 field lengths implemented: 192, 384 and 512 bits
- $w=16$ bits for 192 and 32 for 384 and 512
- on various FPGAs
- high performance Virtex 5 (LX220)
- low cost Spartan 6 (LX45/LX100)
- recent mid-range Kintex 7 (70T)
- 2 configurations: with and without DSP blocks

FPGA Implementation Results (1/2)

Reduction in Slices compared to MM: mainly around 40%

Reduction in DSP blocks 50% for most values

FPGA Implementation Results (2/2)

Timing results for a single modular multiplication with (bottom) and without (top) DSP blocks

Virtex 5

Kintex 7

Timing overhead always less than 10%

Conclusion

Theoretical conclusions:

- only 1 base: \# moduli / 2
- \# EMMs / 2
- \# precomputations / 4
- It works only for special primes P (it is the same for standard primes)

Implementation conclusions:

- the area is almost divided by 2 for a small time overhead ($<10 \%$)
- the architecture is still flexible

Further implementation works:

- faster architecture for SBMM (factor 2 expected)
- integration in a full RNS ECC cryptosystem
- compatibility with the countermeasures based on RNS

Thank you for your attention

References I

[BDE13] J.-C. Bajard, S. Duquesne, and M. D. Ercegovac.
Combining leak-resistant arithmetic for elliptic curves defined over Fp and RNS representation.
Publications Mathématiques UFR Sciences Techniques Besançon, pages 67-87, 2013.
[BKP09] J.-C. Bajard, M. Kaihara, and T. Plantard.
Selected RNS bases for modular multiplication.
In Proc. 19th Symposium on Computer Arithmetic (ARITH), pages 25-32. IEEE, June 2009.
[BM14] J.-C. Bajard and N. Merkiche.
Double level Montgomery Cox-Rower architecture, new bounds.
In Proc. 13th Smart Card Research and Advanced Application Conference (CARDIS), LNCS. Springer, November 2014.
[BT13] K. Bigou and A. Tisserand.
Improving modular inversion in RNS using the plus-minus method.
In Proc. 15th Cryptographic Hardware and Embedded Systems (CHES), volume 8086 of LNCS, pages 233-249. Springer, August 2013.
[BT14] K. Bigou and A. Tisserand.
RNS modular multiplication through reduced base extensions.
In Proc. 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 57-62. IEEE, June 2014.

References II

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644-654, November 1976.
[Elg85] T. Elgamal.
A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4):469-472, July 1985.
[Gar59] H. L. Garner.
The residue number system.
IRE Transactions on Electronic Computers, EC-8(2):140-147, June 1959.
[GLP ${ }^{+}$12] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi.
An algorithmic and architectural study on Montgomery exponentiation in RNS.
IEEE Transactions on Computers, 61(8):1071-1083, August 2012.
[Gui10] N. Guillermin.
A high speed coprocessor for elliptic curve scalar multiplications over \mathbb{F}_{p}.
In Proc. 12th Cryptographic Hardware and Embedded Systems (CHES), volume 6225 of LNCS, pages 48-64. Springer, August 2010.

References III

[JY02] M. Joye and S.-M. Yen.
The Montgomery powering ladder.
In Proc. 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of LNCS, pages 291-302. Springer, August 2002.
[KKSS00] S. Kawamura, M. Koike, F. Sano, and A. Shimbo.
Cox-Rower architecture for fast parallel Montgomery multiplication.
In Proc. 19th International Conference on the Theory and Application of Cryptographic (EUROCRYPT), volume 1807 of LNCS, pages 523-538. Springer, May 2000.
[Kob87] N. Koblitz.
Elliptic curve cryptosystems.
Mathematics of computation, 48(177):203-209, 1987.
[Mil85] V. Miller.
Use of elliptic curves in cryptography.
In Proc. 5th International Cryptology Conference (CRYPTO), volume 218 of LNCS, pages 417-426. Springer, 1985.
[PP95] K. C. Posch and R. Posch.
Modulo reduction in residue number systems.
IEEE Transactions on Parallel and Distributed Systems, 6(5):449-454, May 1995.

References IV

```
[RSA78] R. L. Rivest, A. Shamir, and L. Adleman.
    A method for obtaining digital signatures and public-key cryptosystems.
    Communications of the ACM, 21(2):120-126, February }1978
[SV55] A. Svoboda and M. Valach.
Operátorové obvody (operator circuits in czech).
Stroje na Zpracování Informací (Information Processing Machines), 3:247-296, 1955.
[YFCV14] G. Yao, J. Fan, R. Cheung, and I. Verbauwhede.
Novel RNS parameter selection for fast modular multiplication.
IEEE Transactions on Computers, 63(8):2099-2105, Aug 2014.
```


FPGA Implementation Results of State-of-Art MM and SBMM Algorithms with DSP Blocks and BRAMs

Algo.	FPGA	ℓ	Slices(FF/LUT)	DSP/BRAM	\#cycles	Freq.(MHz)	time(ns)
MM	S6	192	$1733(2780 / 5149)$	$36 / 0$	50	140	357
MM	S6	384	$3668(6267 / 11748)$	$58 / 0$	50	71	704
MM	S6	512	$5457(8617 / 18366)$	$58 / 0$	58	70	828
SBMM	S6	192	$1214(1908 / 3674)$	$18 / 0$	58	154	376
SBMM	S6	384	$2213(3887 / 6709)$	$41 / 0$	58	78	743
SBMM	S6	512	$2912(5074 / 8746)$	$56 / 0$	66	76	868
MM	V5	192	$1941(2957 / 6053)$	$26 / 0$	50	184	271
MM	V5	384	$3304(5692 / 10455)$	$84 / 12$	50	118	423
MM	V5	512	$6180(7557 / 15240)$	$112 / 16$	58	116	500
SBMM	V5	192	$1447(1973 / 4682)$	$15 / 0$	58	196	295
SBMM	V5	384	$2256(3818 / 8415)$	$42 / 6$	58	124	467
SBMM	V5	512	$3400(4960 / 10877)$	$57 / 8$	66	123	536
MM	K7	192	$1732(2759 / 5075)$	$36 / 0$	50	260	192
MM	K7	384	$3278(5884 / 9841)$	$84 / 0$	50	171	292
MM	K7	512	$4186(7814 / 13021)$	$112 / 0$	58	170	341
SBMM	K7	192	$999(1867 / 3599)$	$18 / 0$	58	272	213
SBMM	K7	384	$2111(3889 / 6691)$	$41 / 0$	58	179	324
SBMM	K7	512	$3104(5076 / 8757)$	$56 / 0$	66	176	375

FPGA Implementation Results of State-of-Art MM and SBMM Algorithms without DSP Blocks and BRAMs

Algo.	FPGA	ℓ	Slices(FF/LUT)	\#cycles	Freq.(MHz)	time(ns)
MM	S6	192	$3238(4288 / 10525)$	50	114	438
MM	S6 *	384	$7968(8868 / 27323)$	50	70	714
MM	S6 *	512	$10381(11750 / 35751)$	58	45	1288
SBMM	S6 *	192	$1793(2539 / 6085)$	58	142	408
SBMM	S6 *	384	$4577(5302 / 15160)$	58	91	637
SBMM	S6 *	512	$6163(6875 / 20147)$	66	90	733
MM	V5	192	$3358(3991 / 11136)$	50	126	396
MM	V5	384	$8675(7624 / 29719)$	50	109	458
MM	V5	512	$11401(10109 / 39257)$	58	106	547
SBMM	V5	192	$1980(2444 / 6888)$	58	147	394
SBMM	V5	384	$4942(4696 / 16672)$	58	125	464
SBMM	V5	512	$6466(6186 / 22411)$	66	122	540
MM	K7	192	$3109(4060 / 10568)$	50	200	250
MM	K7	384	$7241(7631 / 27377)$	50	140	357
MM	K7	512	$9202(10102 / 35696)$	58	132	439
SBMM	K7	192	$1999(2494 / 6368)$	58	231	251
SBMM	K7	384	$4208(4649 / 15137)$	58	162	358
SBMM	K7	512	$4922(6146 / 19269)$	66	152	434

Formulas for $y^{2}=x^{3}+a x+b$ with RNS optimizations [BDE13] and (X, Z) coordinates [JY02]

Point Operation	$\mathbf{P}_{\mathbf{1}}+\mathbf{P}_{\mathbf{2}}(\mathrm{ADD})$	$2 \mathbf{P}_{\mathbf{1}}(\mathrm{DBL})$
Formulas	$A=Z_{1} X_{2}+Z_{2} X_{1}$	$E=Z_{1}^{2}$
	$B=2 X_{1} X_{2}$	$F=2 X_{1} Z_{1}$
	$C=2 Z_{1} Z_{2}$	$G=X_{1}^{2}$
	$D=a A+b C$	$H=-4 b E$
	$Z_{3}=A^{2}-B C$	$I=a E$
	$X_{3}=B A+C D+2 X_{G} Z_{3}$	$X_{3}=F H+(G-I)^{2}$
		$Z_{3}=2 F(G+I)-E H$

Parallel Execution Flow Using SBMM and Compress

Compress function

Input: $\overrightarrow{K_{a|b| m_{\gamma}}}$ and $\overrightarrow{R_{a|b| m_{\gamma}}}$ with $K, R<\left(m_{\gamma}-1\right) M_{a}$
Precomp.: $\left|M_{a}^{-1}\right|_{m_{\gamma}}$
Output: $\xrightarrow[\left(K_{c}\right)_{a|b| m_{\gamma}}]{l}, \overrightarrow{\left(R_{c}\right)_{a|b| m_{\gamma}}}$ with $K_{c}<3 M_{a}$ and $R_{c}<3 M_{a}$
$\left|R_{k}\right|_{m_{\gamma}} \leftarrow \mathrm{BE}\left(\overrightarrow{K_{a}}, \mathcal{B}_{a}, m_{\gamma}\right) \quad / * \overrightarrow{\left(R_{k}\right)_{a}}=\overrightarrow{K_{a}} * /$
$K_{k} \leftarrow\left|\left(K-R_{k}\right) M_{a}^{-1}\right|_{m_{\gamma}}$
$\overrightarrow{\left(R_{k}\right)_{b}} \leftarrow \overrightarrow{K_{b}}-\overrightarrow{\left(K_{k}\right)_{b}} \times \overrightarrow{\left(M_{a}\right)_{b}}$
$\left|R_{r}\right|_{m_{\gamma}} \leftarrow \mathrm{BE}\left(\overrightarrow{R_{a}}, \mathcal{B}_{\mathrm{a}}, m_{\gamma}\right)$
$/ * \overrightarrow{\left(R_{r}\right)_{a}}=\overrightarrow{R_{a}} * /$
$K_{r} \leftarrow\left|\left(R-R_{r}\right) M_{a}^{-1}\right|_{m_{\gamma}}$
$\overrightarrow{\left(R_{r}\right)_{b}} \leftarrow \overrightarrow{R_{b}}-\overrightarrow{\left(K_{r}\right)_{b}} \times \overrightarrow{\left(M_{a}\right)_{b}}$
return $\xrightarrow[\left(K_{r}+R_{k}\right)_{a|b| m_{\gamma}}]{ }, \overrightarrow{\left(R_{r}+2 K_{k}\right)_{a|b| m_{\gamma}}}$

