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Context

One objective of our research group:

Design efficient hardware implementations of asymmetric cryptography
using fast arithmetic techniques

Examples of targetted cryptosystems:

RSA [RSA78]

Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH),
ElGamal [Elg85]

Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The residue number system (RNS) is a representation which enables fast
computations for cryptosystems requiring large integers (or FP elements)
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ECC Very Short Overview

P large prime of 160–600 bits

y2 = x3 + 4x + 20 over F1009

Elliptic curve E over FP :

y2 = x3 + a x + b

Curve level operations:

Point addition (ADD): Q + Q’

Point doubling (DBL): Q + Q

Scalar multiplication:
[k]Q = Q + Q + . . .+ Q︸ ︷︷ ︸

k times

Security (ECDLP): knowing Q and
[k]Q, k cannot be recovered

ECDLP : Elliptic Curve Discrete Logarithm Problem
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Internal Operations of a Scalar Multiplication

+,−,×,−1 in Fp

ADD, DBL

[k]Q
One scalar multiplication
requires...

Many curve level operations
which require...

MANY FP operations

which can
be performed in a parallel way
using RNS
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Internal Operations of a Scalar Multiplication

mod m1
mod m2
mod m3
mod m4
mod m5

+,−,×,−1 in Fp

ADD, DBL

[k]Q
One scalar multiplication
requires...

Many curve level operations
which require...

MANY FP operations which can
be performed in a parallel way
using RNS
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Residue Number System (RNS) [SV55] [Gar59]

X a large integer of ` bits (` ≈ 160–4096) is represented by:
−→
X = (x1, . . . , xn) = (X mod m1, . . . ,X mod mn)

channel 1

±×
mod m1

w

z1

w

y1

w

x1

channel 2

±×
mod m2

w

z2

w

y2

w

x2 . . .
. . .

. . .

. . .

channel n

±×
mod mn

w

zn

w

yn

w

xnX

Y

Z

RNS base B = (m1, . . . ,mn), n pairwise co-primes of w bits, n × w > `
The Chinese remainder theorem (CRT) is the base of RNS

Note: an EMM is a w -bit elementary modular multiplication (one channel)
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RNS Properties

Pros:

Carry free between channels

each channel is independant

Fast parallel +, −, × and some exact divisions

computations over all channels can be performed in parallel

an RNS multiplication requires n EMMs

Non-positional number system

randomization of internal computations (SCA countermeasures)

Flexibility for hardware implementations

the number of hardware channels and theoretical channels can be
different
various area/ time trade-offs and multi-size support

Cons:

comparison, modular reduction and division are much harder
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A Very Brief and Very Non-Exhaustive History of RNS
for Cryptographic Implementations

First motivation: parallel implementation of RSA

Need for efficient modular reduction : [PP95, BDK98]

Lead to RNS implementations of RSA [KKSS00, NMSK01]

A protection based on randomization is proposed: the
Leak Resistant Arithmetic (LRA) [BILT04]

Ideas are adapted and reused for ECC and
Pairings [Gui10, CDF+11, YFCV12]

Now:

New algorithms, new selection of parameters for RNS
arithmetic [GLP+12, BDE13, BT13, YFCV14, BT14]

New protections based on RNS [Gui11, BEG13, PITM13, NP15]

New architectures [BM14]

New applications [BEMP14]
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Base Extension [ST67]

Issue:
computing a reduction modulo a large number P from the small residues

Usual technique for modular reduction:
Use conversions between 2 bases

B = (m1, . . . ,mn) and B′ = (m′1, . . . ,m
′
n) are coprime RNS bases

X is
−→
X in B and

−→
X ′ in B′

The base extension (BE, introduced in [ST67]) is defined by:

−→
X ′ = BE(

−→
X ,B,B′)

Some operations become possible after a base extension
M =

∏n
i=1 mi is invertible in B′

exact division by M can be done easily

State-of-art BE algorithms cost n2 + n EMMs
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RNS Montgomery Reduction (MR) [PP95]

Input:
−→
X ,
−→
X ′ with X < αP2 < PM and 2P < M ′

Output: (−→ω ,−→ω ′) with ω ≡ X ×M−1 mod P
0 6 ω < 2P

−→
Q ←−

−→
X × (−

−→
P −1) (in base B)

−→
Q ′ ←−BE(

−→
Q ,B,B′)

−→
S ′ ←−

−→
X ′ +

−→
Q ′ ×

−→
P ′ (in base B′)

−→ω ′ ←−
−→
S ′ ×

−→
M−1 (in base B′)

−→ω ←−BE(−→ω ′,B′,B)

B B′
×
•

•
×
+
×
•

•

BE

BE

α is a parameter chosen to speed up some computations, M > αP and
M ′ > 2× P

MR cost: 2 n2 + O(n) EMMs
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Typical RNS Computation Flow

±× over one channel over one RNS vector
(i.e. n channels)

base extension modulo P in RNS
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Cox-Rower RNS Architecture [KKSS00, Gui10]

channel 1

rower 1

w

w

channel 2

rower 2

w

w

. . .

channel n

rower n

w

w

cox

. . .

1

t

w

w

Output

Input

n× w

w w w w w w

CTRL
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Some Implementation Results of 256-bit ECC on FPGA

ref. [GP08] [MLPJ13] [Gui10] [BM14]
(RNS) (RNS)

prime NIST Any Any Any

FPGA Virtex 4 Virtex 4 Virtex 5 Stratix II Kintex 7

# Slices 1715 4655 1725 9177* 1630

# DSPs 32 37 37 96* 46

Freq. MHz 490/245** 250 291 157 281

time ms 0.62 0.44 0.38 0.68 0.61

[k]P Algo. DBL & ADD Möller [Mö01] Mont. ladd. [JY02]

* : Stratix II FPGA is counted in ALM instead of Slices and 9× 9
multiplier instead of Xilinx DSP (18× 25)

**: [GP08] uses 2 clock domains: 490 MHz for arithmetic and 245 MHz
for control
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RNS as a SCA protection

Protections based on randomization

[CNPQ03] proposes to randomly choose the 2 RNS bases in a large
set of moduli (e.g. 2 bases of 9 moduli in a set of 69)

[BILT04] introduces the Leak Resistant Arithmetic (LRA):

at the beginning both bases are chosen randomly from 2n moduli (i.e
once)
Very costly if used at each MR

[Gui11] adapts LRA to the Kawamura et al. base extension

[PITM13] implements LRA and an initial base permutation against
EMA attacks

[NP15] implements a trade-off in LRA usable for each MR

Fault detection using redundancy, e.g. [WH66, Man72, YL73, CNPQ03]
and recently adapted to cryptographic implementations [Gui11, BEG13]
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How to Speed up RNS computations for Cryptography?

Two main ideas to reduce the impact of modular reductions:

Reduce the cost of modular reduction in specific contexts, for
instance:

rearranging computations in an ECC context [Gui10]
rearranging computations in RSA exponentiation context [GLP+12]

our proposed modular multiplication algorithms [BT15, BT14] and

new exponentiation algorithms for discrete logarithm and RSA

Reduce the number of modular reductions, for instance:

computing pattern of the form AB + CD mod P in ECC
formulas [BDE13]

our proposed modular inversion algorithm PM-MI in an ECC

context [BT13]
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New RNS Modular Multiplication
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Improving Modular Multiplication

RNS modular multiplication MM is the most costly operation in RNS
cryptographic applications (ECC, RSA, DL)

Two different multiplications:

simple RNS multiplication : n EMMs

MM = simple RNS multiplication + MR : 2n2 + O(n) EMMs

Our idea: modify RNS to add some positional information

Let us assume Ba with n
2 moduli of w bits (log2 P ≈ n × w , Ba is a

“half base”), then (
−→
Kx ,
−→
Rx ) represents:

−→
X =

−→
Kx

−−→
Ma +

−→
Rx

where Ma =
∏na

i=1 ma,i

Note: Kx and Rx are log2 P
2 bits long
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Decomposition with Split Algorithm

Input:
−−→
Xa|b

Precomp.:
−−−−−−→(
M−1

a

)
b

Output:
−−−−−→
(Kx )a|b ,

−−−−−→
(Rx )a|b with

−−→
Xa|b =

−−−−−→
(Kx )a|b ×

−−−−−→
(Ma)a|b +

−−−−−→
(Rx )a|b

−−−→
(Rx )b ← BE

(−−−→
(Rx )a ,Ba,Bb

)
−−−−→
(Kx )b ←

(−→
Xb −

−−−→
(Rx )b

)
×
−−−−−−→(
M−1

a

)
b

if
−−−−→
(Kx )b =

−→
−1 then

−−−−→
(Kx )b ←

−→
0 /* Kawamura BE correction */

−−−→
(Rx )b ←

−−−→
(Rx )b −

−−−−→
(Ma)b−−−→

(Kx )a ← BE
(−−−−→

(Kx )b ,Bb,Ba

)
return

−−−−−→
(Kx )a|b ,

−−−−−→
(Rx )a|b

Note: the cost of Split is dominated by the 2 BEs (on half bases) :

n2

2 + O(n) when na = nb = n/2
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Use Decomposition

SBMM (Single Base Modular Multiplication) idea:

X is represented by (Kx ,Rx )

P = M2
a − 2 with P prime and Ma odd

Some remarks

P is an equivalent for RNS to pseudo-Mersenne numbers for the
radix 2 standard representation (for instance P = 2521 − 1)

P = M2
a − 1 is never prime

One can find a lot of P for a given size (probabilistic primality tests
using isprime from Maple, for instance generating 10 000 P of 512
bits in 15 s.)
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Classical RNS MM principle

Ba|b, Bc|d : full RNS bases Ba, Bb, Bc , Bd : half bases

︷ ︸︸ ︷Ba|b ︷ ︸︸ ︷Bc|d

Ba︷ ︸︸ ︷ Bb︷ ︸︸ ︷ Bc︷ ︸︸ ︷ Bd︷ ︸︸ ︷
X

× ×× ×× ×× × 2n EMMs

Y

XY

RNS Montgomery Reduction MR 2n2 +O(n) EMMs

Z
(= |XY |P )
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SBMM Principle 1/2

Ba︷ ︸︸ ︷ Bb︷ ︸︸ ︷ Ba︷ ︸︸ ︷ Bb︷ ︸︸ ︷
X : Kx Rx

× ×× ×× ×× × 2n EMMs

Y : Ky Ry

KxKy RxRy

X : Kx Rx

× ×× ×× ×× × 2n EMMs

Y : Ry Ky

KxRy RxKy

XY ≡ 2KxKy + (KxRy + KyRx )Ma + RxRy ≡ U + VMa mod P
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SBMM Principle 2/2

XY ≡ U + VMa ≡ (Ku + Rv )Ma + (Ru + 2Kv ) ≡ Kz Ma+ Rz modP

2KxKy RxKy

+ ++ ++ ++ +

RxRy RxKy

U V

CSplit CSplit 2
(
2
(
n
2

)2
+O(n)

)
= n2 +O(n) EMMs

Ku +Rv = Kz

Ru +2Kv = Rz
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SBMM Algorithm

Parameters: Ba such that M2
a = P + 2 and Bb such that Mb > 6Ma

Input:
−−−−−→
(Kx )a|b ,

−−−−−→
(Rx )a|b ,

−−−−−→
(Ky )a|b ,

−−−−−→
(Ry )a|b with Kx , Rx , Ky , Ry < Ma

Output:
−−−−−→
(Kz )a|b ,

−−−−→
(Rz )a|b with Kz < 5Ma and Rz < 6Ma

−−→
Ua|b ←

−−−−−−−−−−−→
2KxKy + RxRy

−−→
Va|b ←

−−−−−−−−−−→
KxRy + RxKy(−−−−−→

(Ku)a|b ,
−−−−−→
(Ru)a|b

)
← Split (

−−→
Ua|b )(−−−−−→

(Kv )a|b ,
−−−−−→
(Rv )a|b

)
← Split (

−−→
Va|b )(−−−−−→

(Kz )a|b ,
−−−−→
(Rz )a|b

)
←
(−−−−−−−−−→

(Ku + Rv )a|b ,
−−−−−−−−−−−→
(2 · Kv + Ru)a|b

)
return

(−−−−−→
(Kz )a|b ,

−−−−→
(Rz )a|b

)
Mb is a few bits larger than Ma because outputs Kz and Rz are larger than
inputs Kx , Ky , Rx , Ry
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SBMM Algorithm

Using an extra modulo mγ in Bb:

one can have Mb > 6Ma

it enables to compress output values from SBMM

it can be chosen small (e.g. mγ = 26)

Algo. MM [GLP+12] SBMM SBMM + Compress

EMM 2n2 + 4n n2 + 5n (n2 + 7n) EMM + (n + 2) GMM

Precomp. EMW 2n2 + 10n n2

2 + 3n n2

2 + 4n + 2

EMM is a w -bit modular multiplication
GMM is a one multiplication modulo mγ (6 bits in practice)
EMW is a w -bit word stored as a precomputation
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Implementations

FPGA implementations:

MM and SBMM have been implemented

n Rowers for MM and n/2 Rowers for SBMM

3 field lengths implemented: 192, 384 and 512 bits

w = 16 bits for 192 and 32 for 384 and 512

on various FPGAs

high performance Virtex 5 (LX220)

low cost Spartan 6 (LX45/LX100)

recent mid-range Kintex 7 (70T)

(parallel) compression not implemented yet
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SBMM Architecture with n/2 Rowers

channel 1

rower 1

w

w

x1 y1

w

channel 2

rower 2

w

w

x2 y2

w

. . .

channel n
2

rower n
2

w

w

xn
2

yn
2

w

channel n
2 + 1

rower
n
2 + 1

6

6

xn
2 +1 yn

2 +1

6

6

cox

. . .

1

6

w

Output

w w w

w

CTRL
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FPGA Implementation Results

Reduction in Slices
(e.g. 0.4 is -40%)

Reduction in DSP
blocks
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FPGA Implementation Results

Timing results for a single modular multiplication with (top) and without
(bottom) DSP blocks
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Conclusion on SBMM

Theoretical conclusions:

# EMMs / 2

# precomputations / 4

# moduli / 2

the architecture is still flexible

First implementations conclusions:

the area is almost divided by 2 for a small time overhead (< 10 %)

Further implementation works:

n Rowers for SBMM (full parallel implementation)

integration in a full scalar multiplication

This work will be presented at CHES 2015 (September in Saint-Malo)
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Specific Patterns for Exponentiations
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Idea

Goal: accelerate some specific, but usual, computation patterns which uses
RNS modular multiplications

Examples:

modular squares

modular multiplication by constants

more complex patterns with operands reuse

In state-of-the-art, RNS does not support accelerations for these patterns
(except accelerations inside channels)
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A Specific Fast Pattern

The cost of some patterns can be reduced without constraint on the field
characteristic, for instance in the following algorithm [Gor98] :

Input: k = (k`−1, . . . , k1, k0)2, G ∈ Z/PZ
Output: G k mod P
S ← 1
for i from `− 1 to 0 do

S ← S2 mod P
if ki = 1 then S ← S · G mod P

return S

One can observe:

S2G ≡
(
K 2

s M
2
a + 2KsRsMa + R2

s

)
G mod P

≡ K 2
s |M2

aG |P + KsRs |2MaG |P + R2
s |G |P mod P

≡ Ks

(
Ks |M2

aG |P + Rs |2MaG |P
)

+ R2
s |G |P mod P

Karim Bigou RNS for Asymmetric Cryptography May 29, 2015 32 / 40



A Specific Fast Pattern

Values |M2
aG |P , |2MaG |P and |G |P can be precomputed

We choose Ba with n/2 moduli of w bits then Ks and Rs are `/2-bit
values (i.e. the same size as

√
P)

If U2 = Ks

(
Ks |M2

aG |P + Rs |2MaG |P
)

+ R2
s |G |P then log2 U2 ≈ 2` i.e.

U2 is a partially reduced value

Finally, we use the state-of-the-art MR to finish the modular reduction

The total cost of |S2G |P :

the Split mainly costs n2 EMMs . . .

and the final MR mainly costs 2n2 EMMs . . .

leading to 3n2 EMMs

The same pattern is computed with 4n2 EMMs in state-of-the-art of RNS
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Exponentiation Algorithm

Average values for 2 bits of key (one 1 and one 0):

Algo. EMM EMW

Our algorithm 5n2 + 17n 3n2 + 20n

RNS-ME [GLP+12] 6n2 + 12n 2n2 + 10n

Our algorithm (regular) 6n2 + 26n 3n2 + 26n

Regular RNS-ME [GLP+12] 8n2 + 16n 2n2 + 10n

0.7

0.8

0.9

1.0

1.1

1.2

 10  20  30  40  50  60  70
n

Our / RNS−ME [EMM]
Our (Regular) / Regular RNS−ME [EMM]
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Conclusion on Fast Patterns

Our proposed modular exponentiation:

reduces the number of EMMs up to 15 % for the non regular algorithm

reduces the number of EMMs up to 22 % for the regular version

can be easily adapted into a windowed version

Future works:

implementations of the propositions in full cryptosystems

time×area trade-off explorations

analysis of other patterns

analysis of the use of this pattern in other cryptosystems (e.g. ECC)
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Other Published Works on RNS

Proposition SPRR (presented at ASAP 2014) :

Combines Split and MR on reduced bases

gain in EMMs depends on the reuse of operands in operation sequences
(up to 10% less EMMs)

gain in precomputations of 25%

works for discrete logarithm and ECC

Proposition PM-MI (presented at CHES 2013):

Adapts the binary extended Euclidean algorithm for RNS using the
plus-minus trick

it does not require BE

it significantly reduces the number of EMM: # EMMs divided by 10–20

PM-MI and state-of-art algorithm have been implemented on FPGA
PM-MI is 5–12 times faster
with a small area overhead on RNS operator for ECC
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Conclusion
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Conclusion of our contributions

Objective for a full RNS ECC implementation:

Computation time
100%50%

State-of-Art [k]P

PM-MI
+ SBMM )

area
optimized

PM-MI
+ SBMM )

speed
optimized

Area

1

≈ 1
2

≈ 1

Several aspects of our propositions still have to be studied:

a complete ECC cryptoprocessor in RNS implementation

flexibility of the Cox-Rower architecture

compatibility with the countermeasures based on RNS
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General Conclusion

RNS is interesting thanks to several natural properties (e.g.
parallelism, randomization)

the relative costs between the different operations are not the same in
RNS compared to the usual binary system

We have to count differently: e.g. in [BDE13] one has point ADD
faster than DBL!

there is a lot of lines of research to improve the use of RNS for
cryptographic applications

choice of parameters (e.g. moduli, curve parameters . . . )
new algorithms
new architectures
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Thank you for your attention
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