RNS Modular Arithmetic: Introduction and Cryptographic Applications

Karim Bigou
CNRS - IRISA - CAIRN

May 29, 2015

Plan

(1) Context
(2) RNS for Cryptographic Computations
(3) New RNS Modular Multiplication
(9) Specific Patterns for Exponentiations

Context

One objective of our research group:

Design efficient hardware implementations of asymmetric cryptography using fast arithmetic techniques

Examples of targetted cryptosystems:

- RSA [RSA78]
- Discrete Logarithm Cryptosystems: Diffie-Hellman [DH76] (DH), ElGamal [Elg85]
- Elliptic Curve Cryptography (ECC) [Mil85] [Kob87]

The residue number system (RNS) is a representation which enables fast computations for cryptosystems requiring large integers (or \mathbb{F}_{P} elements)

ECC Very Short Overview

P large prime of 160-600 bits

$y^{2}=x^{3}+4 x+20$ over \mathbb{F}_{1009}

Elliptic curve E over \mathbb{F}_{P} :

$$
y^{2}=x^{3}+a x+b
$$

Curve level operations:

- Point addition (ADD): Q + Q'
- Point doubling (DBL): Q + Q
- Scalar multiplication:

$$
[k] \mathbf{Q}=\underbrace{\mathbf{Q}+\mathbf{Q}+\ldots+\mathbf{Q}}_{k \text { times }}
$$

Security (ECDLP): knowing \mathbf{Q} and $[k] \mathbf{Q}, k$ cannot be recovered

ECDLP : Elliptic Curve Discrete Logarithm Problem

Internal Operations of a Scalar Multiplication

One scalar multiplication requires...

Many curve level operations which require...

MANY \mathbb{F}_{P} operations

Internal Operations of a Scalar Multiplication

One scalar multiplication requires...

Many curve level operations which require...
$\underset{\bmod m_{4}}{\bmod } m_{5}$ MANY \mathbb{F}_{P} operations which can $\underset{\bmod m_{2}}{\bmod }$ be performed in a parallel way using RNS

Residue Number System (RNS) [SV55] [Gar59]

X a large integer of ℓ bits $(\ell \approx 160-4096)$ is represented by:
$\vec{X}=\left(x_{1}, \ldots, x_{n}\right)=\left(X \bmod m_{1}, \ldots, X \bmod m_{n}\right)$

RNS base $\mathcal{B}=\left(m_{1}, \ldots, m_{n}\right)$, n pairwise co-primes of w bits, $n \times w \geqslant \ell$ The Chinese remainder theorem (CRT) is the base of RNS
Note: an EMM is a w-bit elementary modular multiplication (one channel)

RNS Properties

Pros:

- Carry free between channels
- each channel is independant
- Fast parallel,,$+- \times$ and some exact divisions
- computations over all channels can be performed in parallel
- an RNS multiplication requires n EMMs
- Non-positional number system
- randomization of internal computations (SCA countermeasures)
- Flexibility for hardware implementations
- the number of hardware channels and theoretical channels can be different
- various area/ time trade-offs and multi-size support

Cons:

- comparison, modular reduction and division are much harder

A Very Brief and Very Non-Exhaustive History of RNS for Cryptographic Implementations

- First motivation: parallel implementation of RSA
- Need for efficient modular reduction: [PP95, BDK98]
- Lead to RNS implementations of RSA [KKSS00, NMSK01]
- A protection based on randomization is proposed: the Leak Resistant Arithmetic (LRA) [BILT04]
- Ideas are adapted and reused for ECC and Pairings [Gui10, CDF ${ }^{+} 11$, YFCV12]
Now:
- New algorithms, new selection of parameters for RNS arithmetic $\left[G L P^{+} 12\right.$, BDE13, BT13, YFCV14, BT14]
- New protections based on RNS [Gui11, BEG13, PITM13, NP15]
- New architectures [BM14]
- New applications [BEMP14]

Base Extension [ST67]

Issue:

computing a reduction modulo a large number P from the small residues

- Usual technique for modular reduction:

Use conversions between 2 bases

- $\mathcal{B}=\left(m_{1}, \ldots, m_{n}\right)$ and $\mathcal{B}^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ are coprime RNS bases
- X is \vec{X} in \mathcal{B} and \vec{X}^{\prime} in \mathcal{B}^{\prime}
- The base extension (BE, introduced in [ST67]) is defined by:

$$
\vec{X}^{\prime}=\mathrm{BE}\left(\vec{X}, \mathcal{B}, \mathcal{B}^{\prime}\right)
$$

- Some operations become possible after a base extension
- $M=\prod_{i=1}^{n} m_{i}$ is invertible in \mathcal{B}^{\prime}
- exact division by M can be done easily
- State-of-art BE algorithms cost $n^{2}+n$ EMMs

RNS Montgomery Reduction (MR) [PP95]

Input: $\vec{X}, \vec{X}^{\prime}$ with $X<\alpha P^{2}<P M$ and $2 P<M^{\prime}$
Output: $\left(\vec{\omega}, \vec{\omega}^{\prime}\right)$ with $\omega \equiv X \times M^{-1} \bmod P$

$$
0 \leqslant \omega<2 P
$$

$\vec{Q} \longleftarrow \vec{X} \times\left(-\vec{P}^{-1}\right)$
$\vec{Q}^{\prime} \longleftarrow \mathrm{BE}\left(\vec{Q}, \mathcal{B}, \mathcal{B}^{\prime}\right)$
$\vec{S}^{\prime} \longleftarrow \vec{X}^{\prime}+\vec{Q}^{\prime} \times \vec{P}^{\prime}$
$\vec{\omega}^{\prime} \longleftarrow \vec{S}^{\prime} \times \vec{M}^{-1}$
$\vec{\omega} \longleftarrow \mathrm{BE}\left(\vec{\omega}^{\prime}, \mathcal{B}^{\prime}, \mathcal{B}\right)$
(in base \mathcal{B})
(in base \mathcal{B}^{\prime})
(in base \mathcal{B}^{\prime})
$\mathcal{B} \quad \mathcal{B}^{\prime}$

α is a parameter chosen to speed up some computations, $M>\alpha P$ and $M^{\prime}>2 \times P$

MR cost: $2 n^{2}+O(n)$ EMMs

Typical RNS Computation Flow

time
$\pm \times$ over one channel \square over one RNS vector (i.e. n channels)

Cox-Rower RNS Architecture [KKSS00, Gui10]

Output

Some Implementation Results of 256-bit ECC on FPGA

ref.	[GP08]	[MLPJ13]		[Gui10] (RNS)	$[\mathrm{BM} 14]$ (RNS)
prime	NIST	Any		Any	Any
FPGA	Virtex 4	Virtex 4	Virtex 5	Stratix II	Kintex 7
\# Slices	1715	4655	1725	9177^{*}	1630
\# DSPs	32	37	37	96^{*}	46
Freq. MHz	$490 / 245^{* *}$	250	291	157	281
time ms	0.62	0.44	0.38	0.68	0.61
[k]P Algo.	DBL \& ADD	Möller $[\mathrm{Mö01]}$		Mont. ladd. [JY02]	

*: Stratix II FPGA is counted in ALM instead of Slices and 9×9 multiplier instead of Xilinx DSP (18×25)
**: [GP08] uses 2 clock domains: 490 MHz for arithmetic and 245 MHz for control

RNS as a SCA protection

Protections based on randomization

- [CNPQ03] proposes to randomly choose the 2 RNS bases in a large set of moduli (e.g. 2 bases of 9 moduli in a set of 69)
- [BILT04] introduces the Leak Resistant Arithmetic (LRA):
- at the beginning both bases are chosen randomly from $2 n$ moduli (i.e once)
- Very costly if used at each MR
- [Gui11] adapts LRA to the Kawamura et al. base extension
- [PITM13] implements LRA and an initial base permutation against EMA attacks
- [NP15] implements a trade-off in LRA usable for each MR

Fault detection using redundancy, e.g. [WH66, Man72, YL73, CNPQ03] and recently adapted to cryptographic implementations [Gui11, BEG13]

How to Speed up RNS computations for Cryptography?

Two main ideas to reduce the impact of modular reductions:

- Reduce the cost of modular reduction in specific contexts, for instance:
- rearranging computations in an ECC context [Gui10]
- rearranging computations in RSA exponentiation context [GLP ${ }^{+}$12]
- our proposed modular multiplication algorithms [BT15, BT14] and new exponentiation algorithms for discrete logarithm and RSA
- Reduce the number of modular reductions, for instance:
- computing pattern of the form $A B+C D \bmod P$ in ECC formulas [BDE13]
- our proposed modular inversion algorithm PM-MI in an ECC context [BT13]

New RNS Modular Multiplication

Improving Modular Multiplication

RNS modular multiplication MM is the most costly operation in RNS cryptographic applications (ECC, RSA, DL)

Two different multiplications:

- simple RNS multiplication : n EMMs
- MM $=$ simple RNS multiplication + MR : $2 n^{2}+O(n)$ EMMs

Our idea: modify RNS to add some positional information
Let us assume \mathcal{B}_{a} with $\frac{n}{2}$ moduli of w bits $\left(\log _{2} P \approx n \times w, \mathcal{B}_{a}\right.$ is a "half base"), then $\left(\overrightarrow{K_{x}}, \overrightarrow{R_{x}}\right)$ represents:

$$
\vec{X}=\overrightarrow{K_{x}} \overrightarrow{M_{a}}+\overrightarrow{R_{x}}
$$

where $M_{a}=\prod_{i=1}^{n_{a}} m_{a, i}$
Note: K_{x} and R_{x} are $\frac{\log _{2} P}{2}$ bits long

Decomposition with Split Algorithm

Input: $\overrightarrow{X_{a \mid b}}$
Precomp.: $\overrightarrow{\left(M_{a}^{-1}\right)_{b}}$
Output: $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}$ with $\overrightarrow{X_{a \mid b}}=\overrightarrow{\left(K_{x}\right)_{a \mid b}} \times \overrightarrow{\left(M_{a}\right)_{a \mid b}}+\overrightarrow{\left(R_{x}\right)_{a \mid b}}$
$\xrightarrow[\left(R_{x}\right)_{b}]{\overrightarrow{B E}\left(\overrightarrow{\left(R_{x}\right)_{a}}, \mathcal{B}_{a}, \mathcal{B}_{b}\right)}$
$\overrightarrow{\left(K_{x}\right)_{b}} \leftarrow\left(\overrightarrow{X_{b}}-\overrightarrow{\left(R_{x}\right)_{b}}\right) \times \overrightarrow{\left(M_{a}^{-1}\right)_{b}}$
if \(\begin{aligned} \overrightarrow{\left(K_{x}\right)_{b}} \& =\overrightarrow{-1} then

\)| $\overrightarrow{\left(K_{x}\right)_{b}}$ |
| :--- |
| $\overrightarrow{\left(R_{x}\right)_{b}}$ |$\leftarrow \overrightarrow{0} & \leftarrow \overrightarrow{\left(R_{x}\right)_{b}}-\overrightarrow{\left(M_{a}\right)_{b}}\end{aligned}$

$\overrightarrow{\left(K_{x}\right)_{a}} \leftarrow \mathrm{BE}\left(\overrightarrow{\left(K_{x}\right)_{b}}, \mathcal{B}_{b}, \mathcal{B}_{a}\right)$
return $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}$
Note: the cost of Split is dominated by the 2 BEs (on half bases) :

$$
\frac{n^{2}}{2}+O(n) \text { when } n_{a}=n_{b}=n / 2
$$

Use Decomposition

SBMM (Single Base Modular Multiplication) idea:

- X is represented by $\left(K_{x}, R_{x}\right)$
- $P=M_{a}^{2}-2$ with P prime and M_{a} odd

Some remarks

- P is an equivalent for RNS to pseudo-Mersenne numbers for the radix 2 standard representation (for instance $P=2^{521}-1$)
- $P=M_{a}^{2}-1$ is never prime
- One can find a lot of P for a given size (probabilistic primality tests using isprime from Maple, for instance generating $10000 P$ of 512 bits in 15 s .)

Classical RNS MM principle

$\mathcal{B}_{a \mid b}, \mathcal{B}_{c \mid d}$: full RNS bases

$\mathcal{B}_{a}, \mathcal{B}_{b}, \mathcal{B}_{c}, \mathcal{B}_{d}$: half bases

SBMM Principle $1 / 2$

$$
X: K_{x} \square \square \square R_{x} \square \square \square
$$

$$
\times \times \times \times \times \times \quad \times \quad \times \quad \times \quad 2 n \text { EMMS }
$$

$$
Y: R_{y} \sqcap|\square| \square K_{y} \square \square \square \mid
$$

$$
K_{x} R_{y}
$$

$$
R_{x} K_{y}
$$

\square

$$
X Y \equiv 2 K_{x} K_{y}+\left(K_{x} R_{y}+K_{y} R_{x}\right) M_{a}+R_{x} R_{y} \equiv U+V M_{a} \bmod P
$$

SBMM Principle 2/2

$$
X Y \equiv U+V M_{a} \equiv\left(K_{u}+R_{v}\right) M_{a}+\left(R_{u}+2 K_{v}\right) \equiv K_{z} M_{a}+R_{z} \bmod P
$$

SBMM Algorithm

Parameters: \mathcal{B}_{a} such that $M_{a}^{2}=P+2$ and \mathcal{B}_{b} such that $M_{b}>6 M_{a}$ Input: $\overrightarrow{\left(K_{x}\right)_{a \mid b}}, \overrightarrow{\left(R_{x}\right)_{a \mid b}}, \overrightarrow{\left(K_{y}\right)_{a \mid b}}, \overrightarrow{\left(R_{y}\right)_{a \mid b}}$ with $K_{x}, R_{x}, K_{y}, R_{y}<M_{a}$
Output: $\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}$ with $K_{z}<5 M_{a}$ and $R_{z}<6 M_{a}$
$\overrightarrow{U_{a \mid b}} \leftarrow \overrightarrow{2 K_{x} K_{y}+R_{x} R_{y}}$
$\overrightarrow{V_{a \mid b}} \leftarrow \overrightarrow{K_{x} R_{y}+R_{x} K_{y}}$
$\left(\overrightarrow{\left(K_{u}\right)_{a \mid b}}, \overrightarrow{\left(R_{u}\right)_{a \mid b}}\right) \leftarrow \operatorname{Split}\left(\overrightarrow{U_{a \mid b}}\right)$
$\left(\overrightarrow{\left(K_{v}\right)_{a \mid b}}, \overrightarrow{\left(R_{v}\right)_{a \mid b}}\right) \leftarrow \operatorname{Split}\left(\overrightarrow{V_{a \mid b}}\right)$
$\left(\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}\right) \leftarrow\left(\overrightarrow{\left(K_{u}+R_{v}\right)_{a \mid b}}, \overrightarrow{\left(2 \cdot K_{v}+R_{u}\right)_{a \mid b}}\right)$
return $\left(\overrightarrow{\left(K_{z}\right)_{a \mid b}}, \overrightarrow{\left(R_{z}\right)_{a \mid b}}\right)$
M_{b} is a few bits larger than M_{a} because outputs K_{z} and R_{z} are larger than inputs $K_{x}, K_{y}, R_{x}, R_{y}$

SBMM Algorithm

Using an extra modulo m_{γ} in \mathcal{B}_{b} :

- one can have $M_{b}>6 M_{a}$
- it enables to compress output values from SBMM
- it can be chosen small (e.g. $m_{\gamma}=2^{6}$)

Algo.	MM $\left[\right.$ GLP $^{+}$12]	SBMM	SBMM + Compress
EMM	$2 n^{2}+4 n$	$\mathbf{n}^{2}+5 n$	$\left(\mathbf{n}^{2}+7 n\right)$ EMM $+(n+2)$ GMM
Precomp. EMW	$2 n^{2}+10 n$	$\frac{\mathfrak{n}^{2}}{2}+3 n$	$\frac{\mathbf{n}^{2}}{2}+4 n+2$

EMM is a w-bit modular multiplication
GMM is a one multiplication modulo m_{γ} (6 bits in practice)
EMW is a w-bit word stored as a precomputation

Implementations

FPGA implementations:

- MM and SBMM have been implemented
- n Rowers for MM and $n / 2$ Rowers for SBMM
- 3 field lengths implemented: 192, 384 and 512 bits
- $w=16$ bits for 192 and 32 for 384 and 512
- on various FPGAs
- high performance Virtex 5 (LX220)
- low cost Spartan 6 (LX45/LX100)
- recent mid-range Kintex 7 (70T)
- (parallel) compression not implemented yet

SBMM Architecture with $n / 2$ Rowers

FPGA Implementation Results

Reduction in Slices
(e.g. 0.4 is -40%)

Reduction in DSP blocks

FPGA Implementation Results

Timing results for a single modular multiplication with (top) and without (bottom) DSP blocks

Conclusion on SBMM

Theoretical conclusions:

- \# EMMs / 2
- \# precomputations / 4
- \# moduli / 2
- the architecture is still flexible

First implementations conclusions:

- the area is almost divided by 2 for a small time overhead ($<10 \%$)

Further implementation works:

- n Rowers for SBMM (full parallel implementation)
- integration in a full scalar multiplication

This work will be presented at CHES 2015 (September in Saint-Malo)

Specific Patterns for Exponentiations

Idea

Goal: accelerate some specific, but usual, computation patterns which uses RNS modular multiplications

Examples:

- modular squares
- modular multiplication by constants
- more complex patterns with operands reuse

In state-of-the-art, RNS does not support accelerations for these patterns (except accelerations inside channels)

A Specific Fast Pattern

The cost of some patterns can be reduced without constraint on the field characteristic, for instance in the following algorithm [Gor98] :

Input: $k=\left(k_{\ell-1}, \ldots, k_{1}, k_{0}\right)_{2}, G \in \mathbb{Z} / P \mathbb{Z}$
Output: $G^{k} \bmod P$
$S \leftarrow 1$
for i from $\ell-1$ to 0 do
$S \leftarrow S^{2} \bmod P$
if $k_{i}=1$ then $S \leftarrow S \cdot G \bmod P$
return S
One can observe:

$$
\begin{aligned}
S^{2} G & \equiv\left(K_{s}^{2} M_{a}^{2}+2 K_{s} R_{s} M_{a}+R_{s}^{2}\right) G \bmod P \\
& \equiv K_{s}^{2}\left|M_{a}^{2} G\right|_{P}+K_{s} R_{s}\left|2 M_{a} G\right|_{P}+R_{s}^{2}|G|_{P} \bmod P \\
& \equiv K_{s}\left(K_{s}\left|M_{a}^{2} G\right|_{P}+R_{s}\left|2 M_{a} G\right|_{P}\right)+R_{s}^{2}|G|_{P} \bmod P
\end{aligned}
$$

A Specific Fast Pattern

Values $\left|M_{a}^{2} G\right|_{P},\left|2 M_{a} G\right|_{P}$ and $|G|_{P}$ can be precomputed
We choose \mathcal{B}_{a} with $n / 2$ moduli of w bits then K_{s} and R_{s} are $\ell / 2$-bit values (i.e. the same size as \sqrt{P})
If $U_{2}=K_{s}\left(K_{s}\left|M_{a}^{2} G\right|_{P}+R_{s}\left|2 M_{a} G\right|_{P}\right)+R_{s}^{2}|G|_{P}$ then $\log _{2} U_{2} \approx 2 \ell$ i.e. U_{2} is a partially reduced value

Finally, we use the state-of-the-art MR to finish the modular reduction
The total cost of $\left|S^{2} G\right|_{p}$:

- the Split mainly costs n^{2} EMMs ...
- and the final MR mainly costs $2 n^{2}$ EMMs ...
- leading to $3 n^{2}$ EMMs

The same pattern is computed with $4 n^{2}$ EMMs in state-of-the-art of RNS

Exponentiation Algorithm

Average values for 2 bits of key (one 1 and one 0):

Algo.	EMM	EMW
Our algorithm	$5 \mathbf{n}^{2}+\mathbf{1 7 n}$	$3 n^{2}+20 \mathrm{n}$
RNS-ME $\left[\mathrm{GLP}^{+} 12\right]$	$6 n^{2}+12 n$	$2 n^{2}+10 n$
Our algorithm (regular)	$6 \mathbf{n}^{2}+\mathbf{2 6 n}$	$3 \mathrm{n}^{2}+26 \mathrm{n}$
Regular RNS-ME $\left[\mathrm{GLP}^{+} 12\right]$	$8 n^{2}+16 n$	$2 n^{2}+10 n$

Conclusion on Fast Patterns

Our proposed modular exponentiation:

- reduces the number of EMMs up to 15% for the non regular algorithm
- reduces the number of EMMs up to 22% for the regular version
- can be easily adapted into a windowed version

Future works:

- implementations of the propositions in full cryptosystems
- time \times area trade-off explorations
- analysis of other patterns
- analysis of the use of this pattern in other cryptosystems (e.g. ECC)

Other Published Works on RNS

Proposition SPRR (presented at ASAP 2014) :

Combines Split and MR on reduced bases

- gain in EMMs depends on the reuse of operands in operation sequences (up to 10% less EMMs)
- gain in precomputations of 25%
- works for discrete logarithm and ECC

Proposition PM-MI (presented at CHES 2013):

Adapts the binary extended Euclidean algorithm for RNS using the plus-minus trick

- it does not require BE
- it significantly reduces the number of EMM: \# EMMs divided by 10-20
- PM-MI and state-of-art algorithm have been implemented on FPGA
- PM-MI is $5 \mathbf{- 1 2}$ times faster
- with a small area overhead on RNS operator for ECC

Conclusion

Conclusion of our contributions

Objective for a full RNS ECC implementation:

Several aspects of our propositions still have to be studied:

- a complete ECC cryptoprocessor in RNS implementation
- flexibility of the Cox-Rower architecture
- compatibility with the countermeasures based on RNS

General Conclusion

- RNS is interesting thanks to several natural properties (e.g. parallelism, randomization)
- the relative costs between the different operations are not the same in RNS compared to the usual binary system
- We have to count differently: e.g. in [BDE13] one has point ADD faster than DBL!
- there is a lot of lines of research to improve the use of RNS for cryptographic applications
- choice of parameters (e.g. moduli, curve parameters ...)
- new algorithms
- new architectures

Thank you for your attention

References I

[BDE13] J.-C. Bajard, S. Duquesne, and M. D. Ercegovac.
Combining leak-resistant arithmetic for elliptic curves defined over Fp and RNS representation.
Publications Mathématiques UFR Sciences Techniques Besançon, pages 67-87, 2013.
[BDK98] J.-C. Bajard, L.-S. Didier, and P. Kornerup. An RNS Montgomery modular multiplication algorithm. IEEE Transactions on Computers, 47(7):766-776, July 1998.
[BEG13] J.-C. Bajard, J. Eynard, and F. Gandino. Fault detection in RNS Montgomery modular multiplication.
In Proc. 21th Symposium on Computer Arithmetic (ARITH), pages 119-126. IEEE, April 2013.
[BEMP14] J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard.
Babaï round-off CVP method in RNS: Application to lattice based cryptographic protocols.
In Proc. 14th International Symposium on Integrated Circuits (ISIC), pages 440-443. IEEE, December 2014.

References II

[BILT04] J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia.
Leak resistant arithmetic.
In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 3156 of LNCS, pages 62-75. Springer, 2004.
[BM14] J.-C. Bajard and N. Merkiche.
Double level Montgomery Cox-Rower architecture, new bounds.
In Proc. 13th Smart Card Research and Advanced Application Conference (CARDIS), LNCS. Springer, November 2014.
[BT13] K. Bigou and A. Tisserand.
Improving modular inversion in RNS using the plus-minus method.
In Proc. 15th Cryptographic Hardware and Embedded Systems (CHES), volume 8086 of LNCS, pages 233-249. Springer, August 2013.
[BT14] K. Bigou and A. Tisserand.
RNS modular multiplication through reduced base extensions.
In Proc. 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 57-62. IEEE, June 2014.

References III

[BT15] K. Bigou and A. Tisserand.
Single base modular multiplication for efficient hardware rns implementations of ecc.
In Proc. 17th Cryptographic Hardware and Embedded Systems (CHES), LNCS.
Springer, 2015.
[CDF ${ }^{+}$11] R. C. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and G. X. Yao.
FPGA implementation of pairings using residue number system and lazy reduction.
In Proc. 13th Cryptographic Hardware and Embedded Systems (CHES), volume 6917 of LNCS, pages 421-441. Springer, September 2011.
[CNPQ03] M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater.
Parallel FPGA implementation of RSA with residue number systems - can side-channel threats be avoided?
In Proc. 46th Midwest Symposium on Circuits and Systems (MWSCAS), volume 2, pages 806-810. IEEE, December 2003.
[DH76] W. Diffie and M. E. Hellman.
New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644-654, November 1976.
[Elg85] T. Elgamal.
A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469-472, July 1985.

References IV

```
[Gar59] H. L. Garner.
    The residue number system.
    IRE Transactions on Electronic Computers, EC-8(2):140-147, June 1959.
[GLP+}\mp@subsup{}{}{+}12] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi
    An algorithmic and architectural study on Montgomery exponentiation in RNS.
    IEEE Transactions on Computers, 61(8):1071-1083, August }2012
[Gor98] D. M. Gordon.
    A survey of fast exponentiation methods.
    Journal of algorithms, 27(1):129-146, 1998.
[GP08] T. Güneysu and C. Paar.
    Ultra high performance ECC over NIST primes on commercial FPGAs.
    In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 5154 of
LNCS, pages 62-78. Springer, 2008.
[Gui10] N. Guillermin.
A high speed coprocessor for elliptic curve scalar multiplications over \(\mathbb{F}_{p}\). In Proc. 12th Cryptographic Hardware and Embedded Systems (CHES), volume 6225 of LNCS, pages 48-64. Springer, August 2010.
```


References V

[Gui11] N. Guillermin.
A coprocessor for secure and high speed modular arithmetic.
Technical Report 354, IACR Cryptology ePrint Archive, 2011.
[JY02] M. Joye and S.-M. Yen.
The Montgomery powering ladder.
In Proc. 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of LNCS, pages 291-302. Springer, August 2002.
[KKSS00] S. Kawamura, M. Koike, F. Sano, and A. Shimbo.
Cox-Rower architecture for fast parallel Montgomery multiplication.
In Proc. 19th International Conference on the Theory and Application of
Cryptographic (EUROCRYPT), volume 1807 of LNCS, pages 523-538. Springer,
May 2000.
[Kob87] N. Koblitz.
Elliptic curve cryptosystems.
Mathematics of computation, 48(177):203-209, 1987.
[Man72] D. Mandelbaum.
Error correction in residue arithmetic.
IEEE Transactions on Computers, 100(6):538-545, 1972.

References VI

[Mil85] V. Miller.
Use of elliptic curves in cryptography.
In Proc. 5th International Cryptology Conference (CRYPTO), volume 218 of LNCS, pages 417-426. Springer, 1985.
[MLPJ13] Y. Ma, Z. Liu, W. Pan, and J. Jing.
A high-speed elliptic curve cryptographic processor for generic curves over GF(p).
In Proc. 20th Selected Areas in Cryptography(SAC), LNCS, pages 421-437.
Springer, 2013.
[Mö01] B. Möller.
Securing elliptic curve point multiplication against side-channel attacks.
In Information Security, volume 2200 of LNCS, pages 324-334. Springer, 2001.
[NMSK01] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura.
Implementation of RSA algorithm based on RNS Montgomery multiplication.
In Proc. 3rd Cryptographic Hardware and Embedded Systems (CHES), volume 2162 of LNCS, pages 364-376. Springer, May 2001.
[NP15] C. Negre and G. Perin.
Trade-off approaches for leak resistant modular arithmetic in RNS.
In Proc. 20th Australasian Conference on Information Security and Privacy (ACISP, to appear), June 2015.

References VII

[PITM13] G. Perin, L. Imbert, L. Torres, and P. Maurine.
Electromagnetic analysis on RSA algorithm based on RNS.
In Proc. 16th Euromicro Conference on Digital System Design (DSD), pages 345-352. IEEE, September 2013.
[PP95] K. C. Posch and R. Posch.
Modulo reduction in residue number systems.
IEEE Transactions on Parallel and Distributed Systems, 6(5):449-454, May 1995.
[RSA78] R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120-126, February 1978.
[ST67] N. S. Szabo and R. I. Tanaka.
Residue arithmetic and its applications to computer technology.
McGraw-Hill, 1967.
[SV55] A. Svoboda and M. Valach.
Operátorové obvody (operator circuits in czech).
Stroje na Zpracování Informací (Information Processing Machines), 3:247-296, 1955.

References VIII

```
[WH66] R. W. Watson and C. W. Hastings.
    Self-checked computation using residue arithmetic.
    Proceedings of the IEEE, 54(12):1920-1931, 1966.
[YFCV12] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede.
Faster pairing coprocessor architecture.
In Proc. 5th Pairing-Based Cryptography (Pairing), volume 7708 of LNCS, pages
160-176. Springer, May }2012
[YFCV14] G. Yao, J. Fan, R. Cheung, and I. Verbauwhede.
Novel RNS parameter selection for fast modular multiplication.
IEEE Transactions on Computers, 63(8):2099-2105, Aug 2014.
[YL73] S. S-S Yau and Y.-C. Liu.
    Error correction in redundant residue number systems.
    IEEE Transactions on Computers, 100(1):5-11, 1973.
```

